bjoernp commited on
Commit
3177614
·
1 Parent(s): a433937

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -25
README.md CHANGED
@@ -74,37 +74,36 @@ However, the average of **71.24** would earn the #2 spot on the HF leaderboard a
74
 
75
  We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
76
 
77
- <!--
78
  ### FastEval
79
 
80
  | Metric | Value |
81
  |-----------------------|-------|
82
- | GSM8K | 81.2 |
83
- | Math | 22.3 |
84
- | BBH | 72.9 |
85
- | MMLU | 67.9 |
86
- | **Avg.** | **53.3** |
87
 
88
  ### MTBench
89
 
90
  ```json
91
  {
92
- "first_turn": 8.45,
93
- "second_turn": 7.45,
94
  "categories": {
95
- "writing": 9.4,
96
- "roleplay": 8.65,
97
- "reasoning": 6.85,
98
- "math": 5.55,
99
- "coding": 4.95,
100
- "extraction": 9.15,
101
- "stem": 9.225,
102
- "humanities": 9.825
103
  },
104
- "average": 7.95
105
  }
106
  ```
107
- -->
108
  ## Prompt Format
109
 
110
  This model follows the ChatML format:
@@ -132,17 +131,18 @@ If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get
132
 
133
  ## Dataset
134
 
135
- The dataset curation for DiscoLM 120b followed a "brute force"/"PoC" approach, as one goal was to see whether a 120b model can "absorb" more instruction data than a 70b model.
136
 
137
- The following datasets were used for training DiscoLM 120b:
138
 
139
  * [SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
140
- * [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
141
  * [OpenHermes](https://huggingface.co/datasets/teknium/openhermes)
142
  * [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
143
- * [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
144
  * [Synthia v.1.3](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
145
- * [AgentInstruct](https://huggingface.co/datasets/THUDM/AgentInstruct)
 
146
 
147
  Many thanks for all dataset providers/curators!
148
 
@@ -156,10 +156,13 @@ DiscoResearch is an aspiring open research community. Disco should be a place wh
156
 
157
  ## Acknowledgements
158
 
159
- Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp). [Jan Harries](https://huggingface.co/jphme) helped with technical adivce, logistics and the Model Card and [AutoMeta](https://huggingface.co/Alignment-Lab-AI) also provided helpful technical adivce.
 
160
  The model was trained with compute provided by [HessianAI](https://hessian.ai/) - many thanks in particular to [Patrick Schramowski](https://huggingface.co/PSaiml) for his support.
161
 
162
- We are standing on the shoulders of giants; many thanks in no particular order to [alpindale](https://huggingface.co/alpindale) for Goliath 120b (with important contributions by [Charles Goddard](https://huggingface.co/chargoddard) and [Undi95](https://huggingface.co/Undi95)), [TheBloke](https://huggingface.co/TheBloke) for providing quantized versions, [winglian](https://huggingface.co/winglian) for Axolotl which was used to train the model and the SlimOrca dataset, [garage-bAInd](https://huggingface.co/garage-bAInd), [Teknium](https://huggingface.co/teknium), [Migel Tissera](https://huggingface.co/migtissera), [MetaMath](https://huggingface.co/meta-math) for their great datasets (please contact us if we forgot to mention you here!).
 
 
163
 
164
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
165
 
 
74
 
75
  We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
76
 
 
77
  ### FastEval
78
 
79
  | Metric | Value |
80
  |-----------------------|-------|
81
+ | GSM8K | 70.6 |
82
+ | Math | 17.8 |
83
+ | BBH | 63.4 |
84
+ | MMLU | 64.7 |
85
+ | **Avg.** | **48.87** |
86
 
87
  ### MTBench
88
 
89
  ```json
90
  {
91
+ "first_turn": 7.9,
92
+ "second_turn": 7.0625,
93
  "categories": {
94
+ "writing": 9.55,
95
+ "roleplay": 8.35,
96
+ "reasoning": 6.15,
97
+ "math": 4.7,
98
+ "coding": 4.8,
99
+ "extraction": 7.35,
100
+ "stem": 9.1,
101
+ "humanities": 9.85
102
  },
103
+ "average": 7.48125
104
  }
105
  ```
106
+
107
  ## Prompt Format
108
 
109
  This model follows the ChatML format:
 
131
 
132
  ## Dataset
133
 
134
+ The dataset curation for DiscoLM 70b followed a "brute force"/"PoC" approach.
135
 
136
+ The following datasets were used for training DiscoLM 70b:
137
 
138
  * [SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
139
+ * [OpenSchnabeltier](https://huggingface.co/datasets/LeoLM/OpenSchnabeltier) translated to DE from [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
140
  * [OpenHermes](https://huggingface.co/datasets/teknium/openhermes)
141
  * [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
142
+ * [UltraChat DE](https://huggingface.co/datasets/bjoernp/ultrachat_de) translated to DE from [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
143
  * [Synthia v.1.3](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
144
+ * [German_Songs](https://huggingface.co/datasets/THUDM/AgentInstruct)
145
+ * Capybara Dataset by [Nous Research](https://huggingface.co/NousResearch/)
146
 
147
  Many thanks for all dataset providers/curators!
148
 
 
156
 
157
  ## Acknowledgements
158
 
159
+ Disco 70b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp). [Jan Harries](https://huggingface.co/jphme) helped with technical adivce, logistics and the Model Card.
160
+ [AutoMeta](https://huggingface.co/Alignment-Lab-AI) also provided helpful technical advice and rounded up his connections to select a set of high-quality datasets.
161
  The model was trained with compute provided by [HessianAI](https://hessian.ai/) - many thanks in particular to [Patrick Schramowski](https://huggingface.co/PSaiml) for his support.
162
 
163
+ We are standing on the shoulders of giants; many thanks in no particular order to [Laion](https://laion.ai) for LeoLM 70b
164
+ (especially to [Christoph Schuhmann](https://laion.ai) who got us all connected),
165
+ [TheBloke](https://huggingface.co/TheBloke) for providing quantized versions, [winglian](https://huggingface.co/winglian) for Axolotl which was used to train the model and the SlimOrca dataset, [garage-bAInd](https://huggingface.co/garage-bAInd), [Teknium](https://huggingface.co/teknium), [Migel Tissera](https://huggingface.co/migtissera), [MetaMath](https://huggingface.co/meta-math) for their great datasets (please contact us if we forgot to mention you here!).
166
 
167
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
168