Upload stable_cascade.py
Browse files- dataset/stable_cascade.py +1789 -0
dataset/stable_cascade.py
ADDED
@@ -0,0 +1,1789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# コードは Stable Cascade からコピーし、一部修正しています。元ライセンスは MIT です。
|
2 |
+
# The code is copied from Stable Cascade and modified. The original license is MIT.
|
3 |
+
# https://github.com/Stability-AI/StableCascade
|
4 |
+
|
5 |
+
import math
|
6 |
+
from types import SimpleNamespace
|
7 |
+
from typing import List, Optional
|
8 |
+
from einops import rearrange
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
import torchvision
|
14 |
+
|
15 |
+
# Put this .py file into sd-scripts/library and run the training.
|
16 |
+
# It will run 1 step and FP16 fix the model after.
|
17 |
+
|
18 |
+
fp16_fix_save_path = "/mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3"
|
19 |
+
|
20 |
+
MODEL_VERSION_STABLE_CASCADE = "stable_cascade"
|
21 |
+
|
22 |
+
EFFNET_PREPROCESS = torchvision.transforms.Compose(
|
23 |
+
[torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))]
|
24 |
+
)
|
25 |
+
|
26 |
+
def check_scale(tensor):
|
27 |
+
return torch.mean(torch.abs(tensor))
|
28 |
+
|
29 |
+
def convert_state_dict_normal_attn_to_mha(state_dict):
|
30 |
+
# convert to_q/k/v and out_proj to nn.MultiheadAttention
|
31 |
+
for key in list(state_dict.keys()):
|
32 |
+
if "attention.attn." in key:
|
33 |
+
if "to_q.bias" in key:
|
34 |
+
q = state_dict.pop(key)
|
35 |
+
k = state_dict.pop(key.replace("to_q.bias", "to_k.bias"))
|
36 |
+
v = state_dict.pop(key.replace("to_q.bias", "to_v.bias"))
|
37 |
+
state_dict[key.replace("to_q.bias", "in_proj_bias")] = torch.cat([q, k, v])
|
38 |
+
elif "to_q.weight" in key:
|
39 |
+
q = state_dict.pop(key)
|
40 |
+
k = state_dict.pop(key.replace("to_q.weight", "to_k.weight"))
|
41 |
+
v = state_dict.pop(key.replace("to_q.weight", "to_v.weight"))
|
42 |
+
state_dict[key.replace("to_q.weight", "in_proj_weight")] = torch.cat([q, k, v])
|
43 |
+
elif "out_proj.bias" in key:
|
44 |
+
v = state_dict.pop(key)
|
45 |
+
state_dict[key.replace("out_proj.bias", "out_proj.bias")] = v
|
46 |
+
elif "out_proj.weight" in key:
|
47 |
+
v = state_dict.pop(key)
|
48 |
+
state_dict[key.replace("out_proj.weight", "out_proj.weight")] = v
|
49 |
+
return state_dict
|
50 |
+
|
51 |
+
|
52 |
+
# region VectorQuantize
|
53 |
+
|
54 |
+
# from torchtools https://github.com/pabloppp/pytorch-tools
|
55 |
+
# 依存ライブラリを増やしたくないのでここにコピペ
|
56 |
+
|
57 |
+
|
58 |
+
class vector_quantize(torch.autograd.Function):
|
59 |
+
@staticmethod
|
60 |
+
def forward(ctx, x, codebook):
|
61 |
+
with torch.no_grad():
|
62 |
+
codebook_sqr = torch.sum(codebook**2, dim=1)
|
63 |
+
x_sqr = torch.sum(x**2, dim=1, keepdim=True)
|
64 |
+
|
65 |
+
dist = torch.addmm(codebook_sqr + x_sqr, x, codebook.t(), alpha=-2.0, beta=1.0)
|
66 |
+
_, indices = dist.min(dim=1)
|
67 |
+
|
68 |
+
ctx.save_for_backward(indices, codebook)
|
69 |
+
ctx.mark_non_differentiable(indices)
|
70 |
+
|
71 |
+
nn = torch.index_select(codebook, 0, indices)
|
72 |
+
return nn, indices
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
def backward(ctx, grad_output, grad_indices):
|
76 |
+
grad_inputs, grad_codebook = None, None
|
77 |
+
|
78 |
+
if ctx.needs_input_grad[0]:
|
79 |
+
grad_inputs = grad_output.clone()
|
80 |
+
if ctx.needs_input_grad[1]:
|
81 |
+
# Gradient wrt. the codebook
|
82 |
+
indices, codebook = ctx.saved_tensors
|
83 |
+
|
84 |
+
grad_codebook = torch.zeros_like(codebook)
|
85 |
+
grad_codebook.index_add_(0, indices, grad_output)
|
86 |
+
|
87 |
+
return (grad_inputs, grad_codebook)
|
88 |
+
|
89 |
+
|
90 |
+
class VectorQuantize(nn.Module):
|
91 |
+
def __init__(self, embedding_size, k, ema_decay=0.99, ema_loss=False):
|
92 |
+
"""
|
93 |
+
Takes an input of variable size (as long as the last dimension matches the embedding size).
|
94 |
+
Returns one tensor containing the nearest neighbour embeddings to each of the inputs,
|
95 |
+
with the same size as the input, vq and commitment components for the loss as a tuple
|
96 |
+
in the second output and the indices of the quantized vectors in the third:
|
97 |
+
quantized, (vq_loss, commit_loss), indices
|
98 |
+
"""
|
99 |
+
super(VectorQuantize, self).__init__()
|
100 |
+
|
101 |
+
self.codebook = nn.Embedding(k, embedding_size)
|
102 |
+
self.codebook.weight.data.uniform_(-1.0 / k, 1.0 / k)
|
103 |
+
self.vq = vector_quantize.apply
|
104 |
+
|
105 |
+
self.ema_decay = ema_decay
|
106 |
+
self.ema_loss = ema_loss
|
107 |
+
if ema_loss:
|
108 |
+
self.register_buffer("ema_element_count", torch.ones(k))
|
109 |
+
self.register_buffer("ema_weight_sum", torch.zeros_like(self.codebook.weight))
|
110 |
+
|
111 |
+
def _laplace_smoothing(self, x, epsilon):
|
112 |
+
n = torch.sum(x)
|
113 |
+
return (x + epsilon) / (n + x.size(0) * epsilon) * n
|
114 |
+
|
115 |
+
def _updateEMA(self, z_e_x, indices):
|
116 |
+
mask = nn.functional.one_hot(indices, self.ema_element_count.size(0)).float()
|
117 |
+
elem_count = mask.sum(dim=0)
|
118 |
+
weight_sum = torch.mm(mask.t(), z_e_x)
|
119 |
+
|
120 |
+
self.ema_element_count = (self.ema_decay * self.ema_element_count) + ((1 - self.ema_decay) * elem_count)
|
121 |
+
self.ema_element_count = self._laplace_smoothing(self.ema_element_count, 1e-5)
|
122 |
+
self.ema_weight_sum = (self.ema_decay * self.ema_weight_sum) + ((1 - self.ema_decay) * weight_sum)
|
123 |
+
|
124 |
+
self.codebook.weight.data = self.ema_weight_sum / self.ema_element_count.unsqueeze(-1)
|
125 |
+
|
126 |
+
def idx2vq(self, idx, dim=-1):
|
127 |
+
q_idx = self.codebook(idx)
|
128 |
+
if dim != -1:
|
129 |
+
q_idx = q_idx.movedim(-1, dim)
|
130 |
+
return q_idx
|
131 |
+
|
132 |
+
def forward(self, x, get_losses=True, dim=-1):
|
133 |
+
if dim != -1:
|
134 |
+
x = x.movedim(dim, -1)
|
135 |
+
z_e_x = x.contiguous().view(-1, x.size(-1)) if len(x.shape) > 2 else x
|
136 |
+
z_q_x, indices = self.vq(z_e_x, self.codebook.weight.detach())
|
137 |
+
vq_loss, commit_loss = None, None
|
138 |
+
if self.ema_loss and self.training:
|
139 |
+
self._updateEMA(z_e_x.detach(), indices.detach())
|
140 |
+
# pick the graded embeddings after updating the codebook in order to have a more accurate commitment loss
|
141 |
+
z_q_x_grd = torch.index_select(self.codebook.weight, dim=0, index=indices)
|
142 |
+
if get_losses:
|
143 |
+
vq_loss = (z_q_x_grd - z_e_x.detach()).pow(2).mean()
|
144 |
+
commit_loss = (z_e_x - z_q_x_grd.detach()).pow(2).mean()
|
145 |
+
|
146 |
+
z_q_x = z_q_x.view(x.shape)
|
147 |
+
if dim != -1:
|
148 |
+
z_q_x = z_q_x.movedim(-1, dim)
|
149 |
+
return z_q_x, (vq_loss, commit_loss), indices.view(x.shape[:-1])
|
150 |
+
|
151 |
+
|
152 |
+
# endregion
|
153 |
+
|
154 |
+
|
155 |
+
class EfficientNetEncoder(nn.Module):
|
156 |
+
def __init__(self, c_latent=16):
|
157 |
+
super().__init__()
|
158 |
+
self.backbone = torchvision.models.efficientnet_v2_s(weights="DEFAULT").features.eval()
|
159 |
+
self.mapper = nn.Sequential(
|
160 |
+
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
|
161 |
+
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
|
162 |
+
)
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
return self.mapper(self.backbone(x))
|
166 |
+
|
167 |
+
@property
|
168 |
+
def dtype(self) -> torch.dtype:
|
169 |
+
return next(self.parameters()).dtype
|
170 |
+
|
171 |
+
@property
|
172 |
+
def device(self) -> torch.device:
|
173 |
+
return next(self.parameters()).device
|
174 |
+
|
175 |
+
def encode(self, x):
|
176 |
+
"""
|
177 |
+
VAE と同じように使えるようにするためのメソッド。正しくはちゃんと呼び出し側で分けるべきだが、暫定的な対応。
|
178 |
+
The method to make it usable like VAE. It should be separated properly, but it is a temporary response.
|
179 |
+
"""
|
180 |
+
# latents = vae.encode(img_tensors).latent_dist.sample().to("cpu")
|
181 |
+
|
182 |
+
# x is -1 to 1, so we need to convert it to 0 to 1, and then preprocess it with EfficientNet's preprocessing.
|
183 |
+
x = (x + 1) / 2
|
184 |
+
x = EFFNET_PREPROCESS(x)
|
185 |
+
|
186 |
+
x = self(x)
|
187 |
+
return SimpleNamespace(latent_dist=SimpleNamespace(sample=lambda: x))
|
188 |
+
|
189 |
+
|
190 |
+
# なんかわりと乱暴な実装(;'∀')
|
191 |
+
# 一から学習することもないだろうから、無効化しておく
|
192 |
+
|
193 |
+
# class Linear(torch.nn.Linear):
|
194 |
+
# def reset_parameters(self):
|
195 |
+
# return None
|
196 |
+
|
197 |
+
# class Conv2d(torch.nn.Conv2d):
|
198 |
+
# def reset_parameters(self):
|
199 |
+
# return None
|
200 |
+
|
201 |
+
from torch.nn import Conv2d
|
202 |
+
from torch.nn import Linear
|
203 |
+
|
204 |
+
|
205 |
+
r"""
|
206 |
+
class Attention2D(nn.Module):
|
207 |
+
def __init__(self, c, nhead, dropout=0.0):
|
208 |
+
super().__init__()
|
209 |
+
self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True)
|
210 |
+
|
211 |
+
def forward(self, x, kv, self_attn=False):
|
212 |
+
orig_shape = x.shape
|
213 |
+
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
|
214 |
+
if self_attn:
|
215 |
+
kv = torch.cat([x, kv], dim=1)
|
216 |
+
x = self.attn(x, kv, kv, need_weights=False)[0]
|
217 |
+
x = x.permute(0, 2, 1).view(*orig_shape)
|
218 |
+
return x
|
219 |
+
"""
|
220 |
+
|
221 |
+
|
222 |
+
class Attention(nn.Module):
|
223 |
+
def __init__(self, c, nhead, dropout=0.0):
|
224 |
+
# dropout is for attn_output_weights, so we may not need it. however, if we use sdpa, we enable it.
|
225 |
+
# xformers and normal attn are not affected by dropout
|
226 |
+
super().__init__()
|
227 |
+
|
228 |
+
self.to_q = Linear(c, c, bias=True)
|
229 |
+
self.to_k = Linear(c, c, bias=True)
|
230 |
+
self.to_v = Linear(c, c, bias=True)
|
231 |
+
self.out_proj = Linear(c, c, bias=True)
|
232 |
+
self.nhead = nhead
|
233 |
+
self.dropout = dropout
|
234 |
+
self.scale = (c // nhead) ** -0.5
|
235 |
+
|
236 |
+
# default is to use sdpa
|
237 |
+
self.use_memory_efficient_attention_xformers = False
|
238 |
+
self.use_sdpa = True
|
239 |
+
|
240 |
+
def set_use_xformers_or_sdpa(self, xformers, sdpa):
|
241 |
+
# print(f"Attention: set_use_xformers_or_sdpa: xformers={xformers}, sdpa={sdpa}")
|
242 |
+
self.use_memory_efficient_attention_xformers = xformers
|
243 |
+
self.use_sdpa = sdpa
|
244 |
+
|
245 |
+
def forward(self, q_in, k_in, v_in):
|
246 |
+
q_in = self.to_q(q_in)
|
247 |
+
k_in = self.to_k(k_in)
|
248 |
+
v_in = self.to_v(v_in)
|
249 |
+
|
250 |
+
if self.use_memory_efficient_attention_xformers:
|
251 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=self.nhead), (q_in, k_in, v_in))
|
252 |
+
del q_in, k_in, v_in
|
253 |
+
out = self.forward_memory_efficient_xformers(q, k, v)
|
254 |
+
del q, k, v
|
255 |
+
out = rearrange(out, "b n h d -> b n (h d)", h=self.nhead)
|
256 |
+
elif self.use_sdpa:
|
257 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.nhead), (q_in, k_in, v_in))
|
258 |
+
del q_in, k_in, v_in
|
259 |
+
out = self.forward_sdpa(q, k, v)
|
260 |
+
del q, k, v
|
261 |
+
out = rearrange(out, "b h n d -> b n (h d)", h=self.nhead)
|
262 |
+
else:
|
263 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=self.nhead), (q_in, k_in, v_in))
|
264 |
+
del q_in, k_in, v_in
|
265 |
+
out = self._attention(q, k, v)
|
266 |
+
del q, k, v
|
267 |
+
out = rearrange(out, "(b h) n d -> b n (h d)", h=self.nhead)
|
268 |
+
|
269 |
+
return self.out_proj(out)
|
270 |
+
|
271 |
+
def _attention(self, query, key, value):
|
272 |
+
# if self.upcast_attention:
|
273 |
+
# query = query.float()
|
274 |
+
# key = key.float()
|
275 |
+
|
276 |
+
attention_scores = torch.baddbmm(
|
277 |
+
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
|
278 |
+
query,
|
279 |
+
key.transpose(-1, -2),
|
280 |
+
beta=0,
|
281 |
+
alpha=self.scale,
|
282 |
+
)
|
283 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
284 |
+
|
285 |
+
# cast back to the original dtype
|
286 |
+
attention_probs = attention_probs.to(value.dtype)
|
287 |
+
|
288 |
+
# compute attention output
|
289 |
+
hidden_states = torch.bmm(attention_probs, value)
|
290 |
+
|
291 |
+
return hidden_states
|
292 |
+
|
293 |
+
def forward_memory_efficient_xformers(self, q, k, v):
|
294 |
+
import xformers.ops
|
295 |
+
|
296 |
+
q = q.contiguous()
|
297 |
+
k = k.contiguous()
|
298 |
+
v = v.contiguous()
|
299 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる
|
300 |
+
del q, k, v
|
301 |
+
|
302 |
+
return out
|
303 |
+
|
304 |
+
def forward_sdpa(self, q, k, v):
|
305 |
+
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=self.dropout, is_causal=False)
|
306 |
+
return out
|
307 |
+
|
308 |
+
|
309 |
+
class Attention2D(nn.Module):
|
310 |
+
r"""
|
311 |
+
to_q/k/v を個別に重みをもつように変更
|
312 |
+
modified to have separate weights for to_q/k/v
|
313 |
+
"""
|
314 |
+
|
315 |
+
def __init__(self, c, nhead, dropout=0.0):
|
316 |
+
super().__init__()
|
317 |
+
# self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True)
|
318 |
+
self.attn = Attention(c, nhead, dropout=dropout) # , bias=True, batch_first=True)
|
319 |
+
|
320 |
+
def forward(self, x, kv, self_attn=False):
|
321 |
+
orig_shape = x.shape
|
322 |
+
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4
|
323 |
+
if self_attn:
|
324 |
+
kv = torch.cat([x, kv], dim=1)
|
325 |
+
# x = self.attn(x, kv, kv, need_weights=False)[0]
|
326 |
+
x = self.attn(x, kv, kv)
|
327 |
+
x = x.permute(0, 2, 1).view(*orig_shape)
|
328 |
+
return x
|
329 |
+
|
330 |
+
def set_use_xformers_or_sdpa(self, xformers, sdpa):
|
331 |
+
self.attn.set_use_xformers_or_sdpa(xformers, sdpa)
|
332 |
+
|
333 |
+
|
334 |
+
class LayerNorm2d(nn.LayerNorm):
|
335 |
+
def __init__(self, *args, **kwargs):
|
336 |
+
super().__init__(*args, **kwargs)
|
337 |
+
|
338 |
+
def forward(self, x):
|
339 |
+
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
340 |
+
|
341 |
+
|
342 |
+
class GlobalResponseNorm(nn.Module):
|
343 |
+
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105"
|
344 |
+
|
345 |
+
def __init__(self, dim):
|
346 |
+
super().__init__()
|
347 |
+
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
348 |
+
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
349 |
+
|
350 |
+
def forward(self, x):
|
351 |
+
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
352 |
+
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
353 |
+
return self.gamma * (x * Nx) + self.beta + x
|
354 |
+
|
355 |
+
|
356 |
+
class ResBlock(nn.Module):
|
357 |
+
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): # , num_heads=4, expansion=2):
|
358 |
+
super().__init__()
|
359 |
+
self.depthwise = Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c)
|
360 |
+
# self.depthwise = SAMBlock(c, num_heads, expansion)
|
361 |
+
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
|
362 |
+
self.channelwise = nn.Sequential(
|
363 |
+
Linear(c + c_skip, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), Linear(c * 4, c)
|
364 |
+
)
|
365 |
+
|
366 |
+
self.gradient_checkpointing = False
|
367 |
+
self.factor = 1
|
368 |
+
|
369 |
+
def set_factor(self, k):
|
370 |
+
if self.factor!=1:
|
371 |
+
return
|
372 |
+
self.factor = k
|
373 |
+
self.depthwise.bias.data /= k
|
374 |
+
self.channelwise[4].weight.data /= k
|
375 |
+
self.channelwise[4].bias.data /= k
|
376 |
+
|
377 |
+
def set_gradient_checkpointing(self, value):
|
378 |
+
self.gradient_checkpointing = value
|
379 |
+
|
380 |
+
def forward_body(self, x, x_skip=None):
|
381 |
+
x_res = x
|
382 |
+
x = x /self.factor
|
383 |
+
x = self.depthwise(x)
|
384 |
+
x = self.norm(x)
|
385 |
+
if torch.any(torch.isnan(x)):
|
386 |
+
print("nan in first norm")
|
387 |
+
if x_skip is not None:
|
388 |
+
x = torch.cat([x, x_skip], dim=1)
|
389 |
+
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * self.factor
|
390 |
+
if torch.any(torch.isnan(x)):
|
391 |
+
print("nan in second norm")
|
392 |
+
result = x + x_res
|
393 |
+
if check_scale(x) > 5:
|
394 |
+
self.scale = 0.1
|
395 |
+
return x+ x_res
|
396 |
+
|
397 |
+
def forward(self, x, x_skip=None):
|
398 |
+
if self.factor > 1:
|
399 |
+
print("ResBlock: factor > 1")
|
400 |
+
if self.training and self.gradient_checkpointing:
|
401 |
+
# logger.info("ResnetBlock2D: gradient_checkpointing")
|
402 |
+
|
403 |
+
def create_custom_forward(func):
|
404 |
+
def custom_forward(*inputs):
|
405 |
+
return func(*inputs)
|
406 |
+
|
407 |
+
return custom_forward
|
408 |
+
|
409 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, x_skip)
|
410 |
+
else:
|
411 |
+
x = self.forward_body(x, x_skip)
|
412 |
+
|
413 |
+
return x
|
414 |
+
|
415 |
+
|
416 |
+
class AttnBlock(nn.Module):
|
417 |
+
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0):
|
418 |
+
super().__init__()
|
419 |
+
self.self_attn = self_attn
|
420 |
+
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
|
421 |
+
self.attention = Attention2D(c, nhead, dropout)
|
422 |
+
self.kv_mapper = nn.Sequential(nn.SiLU(), Linear(c_cond, c))
|
423 |
+
|
424 |
+
self.gradient_checkpointing = False
|
425 |
+
self.factor = 1
|
426 |
+
|
427 |
+
def set_factor(self, k):
|
428 |
+
if self.factor!=1:
|
429 |
+
return
|
430 |
+
self.factor = k
|
431 |
+
self.attention.attn.out_proj.weight.data /= k
|
432 |
+
if self.attention.attn.out_proj.bias is not None:
|
433 |
+
self.attention.attn.out_proj.bias.data /= k
|
434 |
+
|
435 |
+
def set_gradient_checkpointing(self, value):
|
436 |
+
self.gradient_checkpointing = value
|
437 |
+
|
438 |
+
def set_use_xformers_or_sdpa(self, xformers, sdpa):
|
439 |
+
self.attention.set_use_xformers_or_sdpa(xformers, sdpa)
|
440 |
+
|
441 |
+
def forward_body(self, x, kv):
|
442 |
+
kv = self.kv_mapper(kv)
|
443 |
+
x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn) * self.factor
|
444 |
+
return x
|
445 |
+
|
446 |
+
def forward(self, x, kv):
|
447 |
+
if self.factor > 1:
|
448 |
+
print("AttnBlock: factor > 1")
|
449 |
+
if self.training and self.gradient_checkpointing:
|
450 |
+
# logger.info("AttnBlock: gradient_checkpointing")
|
451 |
+
|
452 |
+
def create_custom_forward(func):
|
453 |
+
def custom_forward(*inputs):
|
454 |
+
return func(*inputs)
|
455 |
+
|
456 |
+
return custom_forward
|
457 |
+
|
458 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, kv)
|
459 |
+
else:
|
460 |
+
x = self.forward_body(x, kv)
|
461 |
+
|
462 |
+
return x
|
463 |
+
|
464 |
+
|
465 |
+
class FeedForwardBlock(nn.Module):
|
466 |
+
def __init__(self, c, dropout=0.0):
|
467 |
+
super().__init__()
|
468 |
+
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6)
|
469 |
+
self.channelwise = nn.Sequential(
|
470 |
+
Linear(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), Linear(c * 4, c)
|
471 |
+
)
|
472 |
+
|
473 |
+
self.gradient_checkpointing = False
|
474 |
+
|
475 |
+
def set_gradient_checkpointing(self, value):
|
476 |
+
self.gradient_checkpointing = value
|
477 |
+
|
478 |
+
def forward_body(self, x):
|
479 |
+
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
480 |
+
return x
|
481 |
+
|
482 |
+
def forward(self, x):
|
483 |
+
if self.training and self.gradient_checkpointing:
|
484 |
+
# logger.info("FeedForwardBlock: gradient_checkpointing")
|
485 |
+
|
486 |
+
def create_custom_forward(func):
|
487 |
+
def custom_forward(*inputs):
|
488 |
+
return func(*inputs)
|
489 |
+
|
490 |
+
return custom_forward
|
491 |
+
|
492 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x)
|
493 |
+
else:
|
494 |
+
x = self.forward_body(x)
|
495 |
+
|
496 |
+
return x
|
497 |
+
|
498 |
+
|
499 |
+
class TimestepBlock(nn.Module):
|
500 |
+
def __init__(self, c, c_timestep, conds=["sca"]):
|
501 |
+
super().__init__()
|
502 |
+
self.mapper = Linear(c_timestep, c * 2)
|
503 |
+
self.conds = conds
|
504 |
+
for cname in conds:
|
505 |
+
setattr(self, f"mapper_{cname}", Linear(c_timestep, c * 2))
|
506 |
+
self.factor = 1
|
507 |
+
|
508 |
+
def set_factor(self, k, ext_k):
|
509 |
+
if self.factor!=1:
|
510 |
+
return
|
511 |
+
print(f"TimestepBlock: factor = {k}, ext_k = {ext_k}")
|
512 |
+
self.factor = k
|
513 |
+
k_factor = k/ext_k
|
514 |
+
a_weight_factor = 1/k_factor
|
515 |
+
b_weight_factor = 1/k
|
516 |
+
a_bias_offset = - ((k_factor - 1)/(k_factor))/(len(self.conds) + 1)
|
517 |
+
|
518 |
+
for module in [self.mapper, *(getattr(self, f"mapper_{cname}") for cname in self.conds)]:
|
519 |
+
a_bias, b_bias = module.bias.data.chunk(2, dim=0)
|
520 |
+
a_weight, b_weight = module.weight.data.chunk(2, dim=0)
|
521 |
+
module.weight.data.copy_(
|
522 |
+
torch.concat([
|
523 |
+
a_weight * a_weight_factor,
|
524 |
+
b_weight * b_weight_factor
|
525 |
+
])
|
526 |
+
)
|
527 |
+
module.bias.data.copy_(
|
528 |
+
torch.concat([
|
529 |
+
a_bias * a_weight_factor + a_bias_offset,
|
530 |
+
b_bias * b_weight_factor
|
531 |
+
])
|
532 |
+
)
|
533 |
+
|
534 |
+
def forward(self, x, t):
|
535 |
+
if self.factor > 1:
|
536 |
+
print("TimestepBlock: factor > 1")
|
537 |
+
t = t.chunk(len(self.conds) + 1, dim=1)
|
538 |
+
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1)
|
539 |
+
for i, c in enumerate(self.conds):
|
540 |
+
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1)
|
541 |
+
a, b = a + ac, b + bc
|
542 |
+
return (x * (1 + a) + b) * self.factor
|
543 |
+
|
544 |
+
|
545 |
+
class UpDownBlock2d(nn.Module):
|
546 |
+
def __init__(self, c_in, c_out, mode, enabled=True):
|
547 |
+
super().__init__()
|
548 |
+
assert mode in ["up", "down"]
|
549 |
+
interpolation = (
|
550 |
+
nn.Upsample(scale_factor=2 if mode == "up" else 0.5, mode="bilinear", align_corners=True) if enabled else nn.Identity()
|
551 |
+
)
|
552 |
+
mapping = nn.Conv2d(c_in, c_out, kernel_size=1)
|
553 |
+
self.blocks = nn.ModuleList([interpolation, mapping] if mode == "up" else [mapping, interpolation])
|
554 |
+
|
555 |
+
self.mode = mode
|
556 |
+
|
557 |
+
self.gradient_checkpointing = False
|
558 |
+
|
559 |
+
def set_gradient_checkpointing(self, value):
|
560 |
+
self.gradient_checkpointing = value
|
561 |
+
|
562 |
+
def forward_body(self, x):
|
563 |
+
org_dtype = x.dtype
|
564 |
+
for i, block in enumerate(self.blocks):
|
565 |
+
# 公式の実装では、常に float で計算しているが、すこしでもメモリを節約するために bfloat16 + Upsample のみ float に変換する
|
566 |
+
# In the official implementation, it always calculates in float, but for the sake of saving memory, it converts to float only for bfloat16 + Upsample
|
567 |
+
if x.dtype == torch.bfloat16 and (self.mode == "up" and i == 0 or self.mode != "up" and i == 1):
|
568 |
+
x = x.float()
|
569 |
+
x = block(x)
|
570 |
+
x = x.to(org_dtype)
|
571 |
+
return x
|
572 |
+
|
573 |
+
def forward(self, x):
|
574 |
+
if self.training and self.gradient_checkpointing:
|
575 |
+
# logger.info("UpDownBlock2d: gradient_checkpointing")
|
576 |
+
|
577 |
+
def create_custom_forward(func):
|
578 |
+
def custom_forward(*inputs):
|
579 |
+
return func(*inputs)
|
580 |
+
|
581 |
+
return custom_forward
|
582 |
+
|
583 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x)
|
584 |
+
else:
|
585 |
+
x = self.forward_body(x)
|
586 |
+
|
587 |
+
return x
|
588 |
+
|
589 |
+
|
590 |
+
class StageAResBlock(nn.Module):
|
591 |
+
def __init__(self, c, c_hidden):
|
592 |
+
super().__init__()
|
593 |
+
# depthwise/attention
|
594 |
+
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
595 |
+
self.depthwise = nn.Sequential(nn.ReplicationPad2d(1), nn.Conv2d(c, c, kernel_size=3, groups=c))
|
596 |
+
|
597 |
+
# channelwise
|
598 |
+
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
599 |
+
self.channelwise = nn.Sequential(
|
600 |
+
nn.Linear(c, c_hidden),
|
601 |
+
nn.GELU(),
|
602 |
+
nn.Linear(c_hidden, c),
|
603 |
+
)
|
604 |
+
|
605 |
+
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
|
606 |
+
|
607 |
+
# Init weights
|
608 |
+
def _basic_init(module):
|
609 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
610 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
611 |
+
if module.bias is not None:
|
612 |
+
nn.init.constant_(module.bias, 0)
|
613 |
+
|
614 |
+
self.apply(_basic_init)
|
615 |
+
|
616 |
+
def _norm(self, x, norm):
|
617 |
+
return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
618 |
+
|
619 |
+
def forward(self, x):
|
620 |
+
mods = self.gammas
|
621 |
+
|
622 |
+
x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1]
|
623 |
+
x = x + self.depthwise(x_temp) * mods[2]
|
624 |
+
|
625 |
+
x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4]
|
626 |
+
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5]
|
627 |
+
|
628 |
+
return x
|
629 |
+
|
630 |
+
|
631 |
+
class StageA(nn.Module):
|
632 |
+
def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192, scale_factor=0.43): # 0.3764
|
633 |
+
super().__init__()
|
634 |
+
self.c_latent = c_latent
|
635 |
+
self.scale_factor = scale_factor
|
636 |
+
c_levels = [c_hidden // (2**i) for i in reversed(range(levels))]
|
637 |
+
|
638 |
+
# Encoder blocks
|
639 |
+
self.in_block = nn.Sequential(nn.PixelUnshuffle(2), nn.Conv2d(3 * 4, c_levels[0], kernel_size=1))
|
640 |
+
down_blocks = []
|
641 |
+
for i in range(levels):
|
642 |
+
if i > 0:
|
643 |
+
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
644 |
+
block = StageAResBlock(c_levels[i], c_levels[i] * 4)
|
645 |
+
down_blocks.append(block)
|
646 |
+
down_blocks.append(
|
647 |
+
nn.Sequential(
|
648 |
+
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
|
649 |
+
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
|
650 |
+
)
|
651 |
+
)
|
652 |
+
self.down_blocks = nn.Sequential(*down_blocks)
|
653 |
+
self.down_blocks[0]
|
654 |
+
|
655 |
+
self.codebook_size = codebook_size
|
656 |
+
self.vquantizer = VectorQuantize(c_latent, k=codebook_size)
|
657 |
+
|
658 |
+
# Decoder blocks
|
659 |
+
up_blocks = [nn.Sequential(nn.Conv2d(c_latent, c_levels[-1], kernel_size=1))]
|
660 |
+
for i in range(levels):
|
661 |
+
for j in range(bottleneck_blocks if i == 0 else 1):
|
662 |
+
block = StageAResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4)
|
663 |
+
up_blocks.append(block)
|
664 |
+
if i < levels - 1:
|
665 |
+
up_blocks.append(
|
666 |
+
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, padding=1)
|
667 |
+
)
|
668 |
+
self.up_blocks = nn.Sequential(*up_blocks)
|
669 |
+
self.out_block = nn.Sequential(
|
670 |
+
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
|
671 |
+
nn.PixelShuffle(2),
|
672 |
+
)
|
673 |
+
|
674 |
+
def encode(self, x, quantize=False):
|
675 |
+
x = self.in_block(x)
|
676 |
+
x = self.down_blocks(x)
|
677 |
+
if quantize:
|
678 |
+
qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1)
|
679 |
+
return qe / self.scale_factor, x / self.scale_factor, indices, vq_loss + commit_loss * 0.25
|
680 |
+
else:
|
681 |
+
return x / self.scale_factor, None, None, None
|
682 |
+
|
683 |
+
def decode(self, x):
|
684 |
+
x = x * self.scale_factor
|
685 |
+
x = self.up_blocks(x)
|
686 |
+
x = self.out_block(x)
|
687 |
+
return x
|
688 |
+
|
689 |
+
def forward(self, x, quantize=False):
|
690 |
+
qe, x, _, vq_loss = self.encode(x, quantize)
|
691 |
+
x = self.decode(qe)
|
692 |
+
return x, vq_loss
|
693 |
+
|
694 |
+
|
695 |
+
r"""
|
696 |
+
|
697 |
+
https://github.com/Stability-AI/StableCascade/blob/master/configs/inference/stage_b_3b.yaml
|
698 |
+
|
699 |
+
# GLOBAL STUFF
|
700 |
+
model_version: 3B
|
701 |
+
dtype: bfloat16
|
702 |
+
|
703 |
+
# For demonstration purposes in reconstruct_images.ipynb
|
704 |
+
webdataset_path: file:inference/imagenet_1024.tar
|
705 |
+
batch_size: 4
|
706 |
+
image_size: 1024
|
707 |
+
grad_accum_steps: 1
|
708 |
+
|
709 |
+
effnet_checkpoint_path: models/effnet_encoder.safetensors
|
710 |
+
stage_a_checkpoint_path: models/stage_a.safetensors
|
711 |
+
generator_checkpoint_path: models/stage_b_bf16.safetensors
|
712 |
+
"""
|
713 |
+
|
714 |
+
|
715 |
+
class StageB(nn.Module):
|
716 |
+
def __init__(
|
717 |
+
self,
|
718 |
+
c_in=4,
|
719 |
+
c_out=4,
|
720 |
+
c_r=64,
|
721 |
+
patch_size=2,
|
722 |
+
c_cond=1280,
|
723 |
+
c_hidden=[320, 640, 1280, 1280],
|
724 |
+
nhead=[-1, -1, 20, 20],
|
725 |
+
blocks=[[2, 6, 28, 6], [6, 28, 6, 2]],
|
726 |
+
block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]],
|
727 |
+
level_config=["CT", "CT", "CTA", "CTA"],
|
728 |
+
c_clip=1280,
|
729 |
+
c_clip_seq=4,
|
730 |
+
c_effnet=16,
|
731 |
+
c_pixels=3,
|
732 |
+
kernel_size=3,
|
733 |
+
dropout=[0, 0, 0.1, 0.1],
|
734 |
+
self_attn=True,
|
735 |
+
t_conds=["sca"],
|
736 |
+
):
|
737 |
+
super().__init__()
|
738 |
+
self.c_r = c_r
|
739 |
+
self.t_conds = t_conds
|
740 |
+
self.c_clip_seq = c_clip_seq
|
741 |
+
if not isinstance(dropout, list):
|
742 |
+
dropout = [dropout] * len(c_hidden)
|
743 |
+
if not isinstance(self_attn, list):
|
744 |
+
self_attn = [self_attn] * len(c_hidden)
|
745 |
+
|
746 |
+
# CONDITIONING
|
747 |
+
self.effnet_mapper = nn.Sequential(
|
748 |
+
nn.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1),
|
749 |
+
nn.GELU(),
|
750 |
+
nn.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1),
|
751 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
752 |
+
)
|
753 |
+
self.pixels_mapper = nn.Sequential(
|
754 |
+
nn.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1),
|
755 |
+
nn.GELU(),
|
756 |
+
nn.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1),
|
757 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
758 |
+
)
|
759 |
+
self.clip_mapper = nn.Linear(c_clip, c_cond * c_clip_seq)
|
760 |
+
self.clip_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)
|
761 |
+
|
762 |
+
self.embedding = nn.Sequential(
|
763 |
+
nn.PixelUnshuffle(patch_size),
|
764 |
+
nn.Conv2d(c_in * (patch_size**2), c_hidden[0], kernel_size=1),
|
765 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
766 |
+
)
|
767 |
+
|
768 |
+
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
769 |
+
if block_type == "C":
|
770 |
+
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
|
771 |
+
elif block_type == "A":
|
772 |
+
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout)
|
773 |
+
elif block_type == "F":
|
774 |
+
return FeedForwardBlock(c_hidden, dropout=dropout)
|
775 |
+
elif block_type == "T":
|
776 |
+
return TimestepBlock(c_hidden, c_r, conds=t_conds)
|
777 |
+
else:
|
778 |
+
raise Exception(f"Block type {block_type} not supported")
|
779 |
+
|
780 |
+
# BLOCKS
|
781 |
+
# -- down blocks
|
782 |
+
self.down_blocks = nn.ModuleList()
|
783 |
+
self.down_downscalers = nn.ModuleList()
|
784 |
+
self.down_repeat_mappers = nn.ModuleList()
|
785 |
+
for i in range(len(c_hidden)):
|
786 |
+
if i > 0:
|
787 |
+
self.down_downscalers.append(
|
788 |
+
nn.Sequential(
|
789 |
+
LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
|
790 |
+
nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2),
|
791 |
+
)
|
792 |
+
)
|
793 |
+
else:
|
794 |
+
self.down_downscalers.append(nn.Identity())
|
795 |
+
down_block = nn.ModuleList()
|
796 |
+
for _ in range(blocks[0][i]):
|
797 |
+
for block_type in level_config[i]:
|
798 |
+
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
799 |
+
down_block.append(block)
|
800 |
+
self.down_blocks.append(down_block)
|
801 |
+
if block_repeat is not None:
|
802 |
+
block_repeat_mappers = nn.ModuleList()
|
803 |
+
for _ in range(block_repeat[0][i] - 1):
|
804 |
+
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
|
805 |
+
self.down_repeat_mappers.append(block_repeat_mappers)
|
806 |
+
|
807 |
+
# -- up blocks
|
808 |
+
self.up_blocks = nn.ModuleList()
|
809 |
+
self.up_upscalers = nn.ModuleList()
|
810 |
+
self.up_repeat_mappers = nn.ModuleList()
|
811 |
+
for i in reversed(range(len(c_hidden))):
|
812 |
+
if i > 0:
|
813 |
+
self.up_upscalers.append(
|
814 |
+
nn.Sequential(
|
815 |
+
LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6),
|
816 |
+
nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2),
|
817 |
+
)
|
818 |
+
)
|
819 |
+
else:
|
820 |
+
self.up_upscalers.append(nn.Identity())
|
821 |
+
up_block = nn.ModuleList()
|
822 |
+
for j in range(blocks[1][::-1][i]):
|
823 |
+
for k, block_type in enumerate(level_config[i]):
|
824 |
+
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
825 |
+
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], self_attn=self_attn[i])
|
826 |
+
up_block.append(block)
|
827 |
+
self.up_blocks.append(up_block)
|
828 |
+
if block_repeat is not None:
|
829 |
+
block_repeat_mappers = nn.ModuleList()
|
830 |
+
for _ in range(block_repeat[1][::-1][i] - 1):
|
831 |
+
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
|
832 |
+
self.up_repeat_mappers.append(block_repeat_mappers)
|
833 |
+
|
834 |
+
# OUTPUT
|
835 |
+
self.clf = nn.Sequential(
|
836 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
837 |
+
nn.Conv2d(c_hidden[0], c_out * (patch_size**2), kernel_size=1),
|
838 |
+
nn.PixelShuffle(patch_size),
|
839 |
+
)
|
840 |
+
|
841 |
+
# --- WEIGHT INIT ---
|
842 |
+
self.apply(self._init_weights) # General init
|
843 |
+
nn.init.normal_(self.clip_mapper.weight, std=0.02) # conditionings
|
844 |
+
nn.init.normal_(self.effnet_mapper[0].weight, std=0.02) # conditionings
|
845 |
+
nn.init.normal_(self.effnet_mapper[2].weight, std=0.02) # conditionings
|
846 |
+
nn.init.normal_(self.pixels_mapper[0].weight, std=0.02) # conditionings
|
847 |
+
nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
|
848 |
+
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
849 |
+
nn.init.constant_(self.clf[1].weight, 0) # outputs
|
850 |
+
|
851 |
+
# blocks
|
852 |
+
for level_block in self.down_blocks + self.up_blocks:
|
853 |
+
for block in level_block:
|
854 |
+
if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
855 |
+
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
856 |
+
elif isinstance(block, TimestepBlock):
|
857 |
+
for layer in block.modules():
|
858 |
+
if isinstance(layer, nn.Linear):
|
859 |
+
nn.init.constant_(layer.weight, 0)
|
860 |
+
|
861 |
+
def _init_weights(self, m):
|
862 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
863 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
864 |
+
if m.bias is not None:
|
865 |
+
nn.init.constant_(m.bias, 0)
|
866 |
+
|
867 |
+
def set_use_xformers_or_sdpa(self, xformers, sdpa):
|
868 |
+
for block in self.down_blocks + self.up_blocks:
|
869 |
+
for layer in block:
|
870 |
+
if hasattr(layer, "set_use_xformers_or_sdpa"):
|
871 |
+
layer.set_use_xformers_or_sdpa(xformers, sdpa)
|
872 |
+
|
873 |
+
def gen_r_embedding(self, r, max_positions=10000):
|
874 |
+
r = r * max_positions
|
875 |
+
half_dim = self.c_r // 2
|
876 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
877 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
878 |
+
emb = r[:, None] * emb[None, :]
|
879 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
880 |
+
if self.c_r % 2 == 1: # zero pad
|
881 |
+
emb = nn.functional.pad(emb, (0, 1), mode="constant")
|
882 |
+
return emb
|
883 |
+
|
884 |
+
def gen_c_embeddings(self, clip):
|
885 |
+
if len(clip.shape) == 2:
|
886 |
+
clip = clip.unsqueeze(1)
|
887 |
+
clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1)
|
888 |
+
clip = self.clip_norm(clip)
|
889 |
+
return clip
|
890 |
+
|
891 |
+
def _down_encode(self, x, r_embed, clip):
|
892 |
+
level_outputs = []
|
893 |
+
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
894 |
+
for down_block, downscaler, repmap in block_group:
|
895 |
+
x = downscaler(x)
|
896 |
+
for i in range(len(repmap) + 1):
|
897 |
+
for block in down_block:
|
898 |
+
if isinstance(block, ResBlock) or (
|
899 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, ResBlock)
|
900 |
+
):
|
901 |
+
x = block(x)
|
902 |
+
elif isinstance(block, AttnBlock) or (
|
903 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, AttnBlock)
|
904 |
+
):
|
905 |
+
x = block(x, clip)
|
906 |
+
elif isinstance(block, TimestepBlock) or (
|
907 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, TimestepBlock)
|
908 |
+
):
|
909 |
+
x = block(x, r_embed)
|
910 |
+
else:
|
911 |
+
x = block(x)
|
912 |
+
if i < len(repmap):
|
913 |
+
x = repmap[i](x)
|
914 |
+
level_outputs.insert(0, x)
|
915 |
+
return level_outputs
|
916 |
+
|
917 |
+
def _up_decode(self, level_outputs, r_embed, clip):
|
918 |
+
x = level_outputs[0]
|
919 |
+
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
920 |
+
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
921 |
+
for j in range(len(repmap) + 1):
|
922 |
+
for k, block in enumerate(up_block):
|
923 |
+
if isinstance(block, ResBlock) or (
|
924 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, ResBlock)
|
925 |
+
):
|
926 |
+
skip = level_outputs[i] if k == 0 and i > 0 else None
|
927 |
+
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
928 |
+
x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode="bilinear", align_corners=True)
|
929 |
+
x = block(x, skip)
|
930 |
+
elif isinstance(block, AttnBlock) or (
|
931 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, AttnBlock)
|
932 |
+
):
|
933 |
+
x = block(x, clip)
|
934 |
+
elif isinstance(block, TimestepBlock) or (
|
935 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, TimestepBlock)
|
936 |
+
):
|
937 |
+
x = block(x, r_embed)
|
938 |
+
else:
|
939 |
+
x = block(x)
|
940 |
+
if j < len(repmap):
|
941 |
+
x = repmap[j](x)
|
942 |
+
x = upscaler(x)
|
943 |
+
return x
|
944 |
+
|
945 |
+
def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
|
946 |
+
if pixels is None:
|
947 |
+
pixels = x.new_zeros(x.size(0), 3, 8, 8)
|
948 |
+
|
949 |
+
# Process the conditioning embeddings
|
950 |
+
r_embed = self.gen_r_embedding(r)
|
951 |
+
for c in self.t_conds:
|
952 |
+
t_cond = kwargs.get(c, torch.zeros_like(r))
|
953 |
+
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond)], dim=1)
|
954 |
+
clip = self.gen_c_embeddings(clip)
|
955 |
+
|
956 |
+
# Model Blocks
|
957 |
+
x = self.embedding(x)
|
958 |
+
x = x + self.effnet_mapper(
|
959 |
+
nn.functional.interpolate(effnet.float(), size=x.shape[-2:], mode="bilinear", align_corners=True)
|
960 |
+
)
|
961 |
+
x = x + nn.functional.interpolate(
|
962 |
+
self.pixels_mapper(pixels).float(), size=x.shape[-2:], mode="bilinear", align_corners=True
|
963 |
+
)
|
964 |
+
level_outputs = self._down_encode(x, r_embed, clip)
|
965 |
+
x = self._up_decode(level_outputs, r_embed, clip)
|
966 |
+
return self.clf(x)
|
967 |
+
|
968 |
+
def update_weights_ema(self, src_model, beta=0.999):
|
969 |
+
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
970 |
+
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
971 |
+
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
972 |
+
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
973 |
+
|
974 |
+
|
975 |
+
r"""
|
976 |
+
|
977 |
+
https://github.com/Stability-AI/StableCascade/blob/master/configs/inference/stage_c_3b.yaml
|
978 |
+
|
979 |
+
# GLOBAL STUFF
|
980 |
+
model_version: 3.6B
|
981 |
+
dtype: bfloat16
|
982 |
+
|
983 |
+
effnet_checkpoint_path: models/effnet_encoder.safetensors
|
984 |
+
previewer_checkpoint_path: models/previewer.safetensors
|
985 |
+
generator_checkpoint_path: models/stage_c_bf16.safetensors
|
986 |
+
"""
|
987 |
+
|
988 |
+
|
989 |
+
class StageC(nn.Module):
|
990 |
+
def __init__(
|
991 |
+
self,
|
992 |
+
c_in=16,
|
993 |
+
c_out=16,
|
994 |
+
c_r=64,
|
995 |
+
patch_size=1,
|
996 |
+
c_cond=2048,
|
997 |
+
c_hidden=[2048, 2048],
|
998 |
+
nhead=[32, 32],
|
999 |
+
blocks=[[8, 24], [24, 8]],
|
1000 |
+
block_repeat=[[1, 1], [1, 1]],
|
1001 |
+
level_config=["CTA", "CTA"],
|
1002 |
+
c_clip_text=1280,
|
1003 |
+
c_clip_text_pooled=1280,
|
1004 |
+
c_clip_img=768,
|
1005 |
+
c_clip_seq=4,
|
1006 |
+
kernel_size=3,
|
1007 |
+
dropout=[0.1, 0.1],
|
1008 |
+
self_attn=True,
|
1009 |
+
t_conds=["sca", "crp"],
|
1010 |
+
switch_level=[False],
|
1011 |
+
):
|
1012 |
+
super().__init__()
|
1013 |
+
self.c_r = c_r
|
1014 |
+
self.t_conds = t_conds
|
1015 |
+
self.c_clip_seq = c_clip_seq
|
1016 |
+
if not isinstance(dropout, list):
|
1017 |
+
dropout = [dropout] * len(c_hidden)
|
1018 |
+
if not isinstance(self_attn, list):
|
1019 |
+
self_attn = [self_attn] * len(c_hidden)
|
1020 |
+
|
1021 |
+
# CONDITIONING
|
1022 |
+
self.clip_txt_mapper = nn.Linear(c_clip_text, c_cond)
|
1023 |
+
self.clip_txt_pooled_mapper = nn.Linear(c_clip_text_pooled, c_cond * c_clip_seq)
|
1024 |
+
self.clip_img_mapper = nn.Linear(c_clip_img, c_cond * c_clip_seq)
|
1025 |
+
self.clip_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)
|
1026 |
+
|
1027 |
+
self.embedding = nn.Sequential(
|
1028 |
+
nn.PixelUnshuffle(patch_size),
|
1029 |
+
nn.Conv2d(c_in * (patch_size**2), c_hidden[0], kernel_size=1),
|
1030 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
|
1034 |
+
if block_type == "C":
|
1035 |
+
return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
|
1036 |
+
elif block_type == "A":
|
1037 |
+
return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout)
|
1038 |
+
elif block_type == "F":
|
1039 |
+
return FeedForwardBlock(c_hidden, dropout=dropout)
|
1040 |
+
elif block_type == "T":
|
1041 |
+
return TimestepBlock(c_hidden, c_r, conds=t_conds)
|
1042 |
+
else:
|
1043 |
+
raise Exception(f"Block type {block_type} not supported")
|
1044 |
+
|
1045 |
+
# BLOCKS
|
1046 |
+
# -- down blocks
|
1047 |
+
self.down_blocks = nn.ModuleList()
|
1048 |
+
self.down_downscalers = nn.ModuleList()
|
1049 |
+
self.down_repeat_mappers = nn.ModuleList()
|
1050 |
+
for i in range(len(c_hidden)):
|
1051 |
+
if i > 0:
|
1052 |
+
self.down_downscalers.append(
|
1053 |
+
nn.Sequential(
|
1054 |
+
LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
|
1055 |
+
UpDownBlock2d(c_hidden[i - 1], c_hidden[i], mode="down", enabled=switch_level[i - 1]),
|
1056 |
+
)
|
1057 |
+
)
|
1058 |
+
else:
|
1059 |
+
self.down_downscalers.append(nn.Identity())
|
1060 |
+
down_block = nn.ModuleList()
|
1061 |
+
for _ in range(blocks[0][i]):
|
1062 |
+
for block_type in level_config[i]:
|
1063 |
+
block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
|
1064 |
+
down_block.append(block)
|
1065 |
+
self.down_blocks.append(down_block)
|
1066 |
+
if block_repeat is not None:
|
1067 |
+
block_repeat_mappers = nn.ModuleList()
|
1068 |
+
for _ in range(block_repeat[0][i] - 1):
|
1069 |
+
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
|
1070 |
+
self.down_repeat_mappers.append(block_repeat_mappers)
|
1071 |
+
|
1072 |
+
# -- up blocks
|
1073 |
+
self.up_blocks = nn.ModuleList()
|
1074 |
+
self.up_upscalers = nn.ModuleList()
|
1075 |
+
self.up_repeat_mappers = nn.ModuleList()
|
1076 |
+
for i in reversed(range(len(c_hidden))):
|
1077 |
+
if i > 0:
|
1078 |
+
self.up_upscalers.append(
|
1079 |
+
nn.Sequential(
|
1080 |
+
LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6),
|
1081 |
+
UpDownBlock2d(c_hidden[i], c_hidden[i - 1], mode="up", enabled=switch_level[i - 1]),
|
1082 |
+
)
|
1083 |
+
)
|
1084 |
+
else:
|
1085 |
+
self.up_upscalers.append(nn.Identity())
|
1086 |
+
up_block = nn.ModuleList()
|
1087 |
+
for j in range(blocks[1][::-1][i]):
|
1088 |
+
for k, block_type in enumerate(level_config[i]):
|
1089 |
+
c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
|
1090 |
+
block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i], self_attn=self_attn[i])
|
1091 |
+
up_block.append(block)
|
1092 |
+
self.up_blocks.append(up_block)
|
1093 |
+
if block_repeat is not None:
|
1094 |
+
block_repeat_mappers = nn.ModuleList()
|
1095 |
+
for _ in range(block_repeat[1][::-1][i] - 1):
|
1096 |
+
block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
|
1097 |
+
self.up_repeat_mappers.append(block_repeat_mappers)
|
1098 |
+
|
1099 |
+
# OUTPUT
|
1100 |
+
self.clf = nn.Sequential(
|
1101 |
+
LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
|
1102 |
+
nn.Conv2d(c_hidden[0], c_out * (patch_size**2), kernel_size=1),
|
1103 |
+
nn.PixelShuffle(patch_size),
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
# --- WEIGHT INIT ---
|
1107 |
+
self.apply(self._init_weights) # General init
|
1108 |
+
nn.init.normal_(self.clip_txt_mapper.weight, std=0.02) # conditionings
|
1109 |
+
nn.init.normal_(self.clip_txt_pooled_mapper.weight, std=0.02) # conditionings
|
1110 |
+
nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
|
1111 |
+
torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
|
1112 |
+
nn.init.constant_(self.clf[1].weight, 0) # outputs
|
1113 |
+
|
1114 |
+
# blocks
|
1115 |
+
for level_block in self.down_blocks + self.up_blocks:
|
1116 |
+
for block in level_block:
|
1117 |
+
if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
|
1118 |
+
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
|
1119 |
+
elif isinstance(block, TimestepBlock):
|
1120 |
+
for layer in block.modules():
|
1121 |
+
if isinstance(layer, nn.Linear):
|
1122 |
+
nn.init.constant_(layer.weight, 0)
|
1123 |
+
|
1124 |
+
def _init_weights(self, m):
|
1125 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
1126 |
+
torch.nn.init.xavier_uniform_(m.weight)
|
1127 |
+
if m.bias is not None:
|
1128 |
+
nn.init.constant_(m.bias, 0)
|
1129 |
+
|
1130 |
+
def set_gradient_checkpointing(self, value):
|
1131 |
+
for block in self.down_blocks + self.up_blocks:
|
1132 |
+
for layer in block:
|
1133 |
+
if hasattr(layer, "set_gradient_checkpointing"):
|
1134 |
+
layer.set_gradient_checkpointing(value)
|
1135 |
+
|
1136 |
+
def set_use_xformers_or_sdpa(self, xformers, sdpa):
|
1137 |
+
for block in self.down_blocks + self.up_blocks:
|
1138 |
+
for layer in block:
|
1139 |
+
if hasattr(layer, "set_use_xformers_or_sdpa"):
|
1140 |
+
layer.set_use_xformers_or_sdpa(xformers, sdpa)
|
1141 |
+
|
1142 |
+
def gen_r_embedding(self, r, max_positions=10000):
|
1143 |
+
r = r * max_positions
|
1144 |
+
half_dim = self.c_r // 2
|
1145 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
1146 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
1147 |
+
emb = r[:, None] * emb[None, :]
|
1148 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
1149 |
+
if self.c_r % 2 == 1: # zero pad
|
1150 |
+
emb = nn.functional.pad(emb, (0, 1), mode="constant")
|
1151 |
+
return emb
|
1152 |
+
|
1153 |
+
def gen_c_embeddings(self, clip_txt, clip_txt_pooled, clip_img):
|
1154 |
+
clip_txt = self.clip_txt_mapper(clip_txt)
|
1155 |
+
if len(clip_txt_pooled.shape) == 2:
|
1156 |
+
clip_txt_pool = clip_txt_pooled.unsqueeze(1)
|
1157 |
+
if len(clip_img.shape) == 2:
|
1158 |
+
clip_img = clip_img.unsqueeze(1)
|
1159 |
+
clip_txt_pool = self.clip_txt_pooled_mapper(clip_txt_pooled).view(
|
1160 |
+
clip_txt_pooled.size(0), clip_txt_pooled.size(1) * self.c_clip_seq, -1
|
1161 |
+
)
|
1162 |
+
clip_img = self.clip_img_mapper(clip_img).view(clip_img.size(0), clip_img.size(1) * self.c_clip_seq, -1)
|
1163 |
+
clip = torch.cat([clip_txt, clip_txt_pool, clip_img], dim=1)
|
1164 |
+
clip = self.clip_norm(clip)
|
1165 |
+
return clip
|
1166 |
+
|
1167 |
+
def _down_encode(self, x, r_embed, clip, cnet=None):
|
1168 |
+
level_outputs = []
|
1169 |
+
block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
|
1170 |
+
for down_block, downscaler, repmap in block_group:
|
1171 |
+
x = downscaler(x)
|
1172 |
+
for i in range(len(repmap) + 1):
|
1173 |
+
for block in down_block:
|
1174 |
+
if isinstance(block, ResBlock) or (
|
1175 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, ResBlock)
|
1176 |
+
):
|
1177 |
+
if cnet is not None:
|
1178 |
+
next_cnet = cnet()
|
1179 |
+
if next_cnet is not None:
|
1180 |
+
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode="bilinear", align_corners=True)
|
1181 |
+
x = block(x)
|
1182 |
+
elif isinstance(block, AttnBlock) or (
|
1183 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, AttnBlock)
|
1184 |
+
):
|
1185 |
+
x = block(x, clip)
|
1186 |
+
elif isinstance(block, TimestepBlock) or (
|
1187 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, TimestepBlock)
|
1188 |
+
):
|
1189 |
+
x = block(x, r_embed)
|
1190 |
+
else:
|
1191 |
+
x = block(x)
|
1192 |
+
if i < len(repmap):
|
1193 |
+
x = repmap[i](x)
|
1194 |
+
level_outputs.insert(0, x)
|
1195 |
+
return level_outputs
|
1196 |
+
|
1197 |
+
def _up_decode(self, level_outputs, r_embed, clip, cnet=None):
|
1198 |
+
x = level_outputs[0]
|
1199 |
+
block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
|
1200 |
+
now_factor = 1
|
1201 |
+
for i, (up_block, upscaler, repmap) in enumerate(block_group):
|
1202 |
+
for j in range(len(repmap) + 1):
|
1203 |
+
for k, block in enumerate(up_block):
|
1204 |
+
if getattr(block, "factor", 1) > 1:
|
1205 |
+
now_factor = -getattr(block, "factor", 1)
|
1206 |
+
scale = check_scale(x)
|
1207 |
+
if scale > 5 or (now_factor < 0 and scale > (5/-now_factor)):
|
1208 |
+
print('='*55)
|
1209 |
+
print(f"in: {i} {j} {k}")
|
1210 |
+
print("up", scale)
|
1211 |
+
if isinstance(block, ResBlock) or (
|
1212 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, ResBlock)
|
1213 |
+
):
|
1214 |
+
skip = level_outputs[i] if k == 0 and i > 0 else None
|
1215 |
+
if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
|
1216 |
+
x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode="bilinear", align_corners=True)
|
1217 |
+
if cnet is not None:
|
1218 |
+
next_cnet = cnet()
|
1219 |
+
if next_cnet is not None:
|
1220 |
+
x = x + nn.functional.interpolate(next_cnet, size=x.shape[-2:], mode="bilinear", align_corners=True)
|
1221 |
+
x = block(x, skip)
|
1222 |
+
if now_factor > 1 and block.factor == 1:
|
1223 |
+
block.set_factor(now_factor)
|
1224 |
+
elif isinstance(block, AttnBlock) or (
|
1225 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, AttnBlock)
|
1226 |
+
):
|
1227 |
+
x = block(x, clip)
|
1228 |
+
if now_factor > 1 and block.factor == 1:
|
1229 |
+
block.set_factor(now_factor)
|
1230 |
+
elif isinstance(block, TimestepBlock) or (
|
1231 |
+
hasattr(block, "_fsdp_wrapped_module") and isinstance(block._fsdp_wrapped_module, TimestepBlock)
|
1232 |
+
):
|
1233 |
+
x = block(x, r_embed)
|
1234 |
+
scale = check_scale(x)
|
1235 |
+
if now_factor > 1 and block.factor == 1:
|
1236 |
+
block.set_factor(now_factor, now_factor)
|
1237 |
+
pass
|
1238 |
+
elif i==1:
|
1239 |
+
now_factor = 5
|
1240 |
+
block.set_factor(now_factor, 1)
|
1241 |
+
else:
|
1242 |
+
x = block(x)
|
1243 |
+
scale = check_scale(x)
|
1244 |
+
if scale > 5 or (now_factor < 0 and scale > (5/-now_factor)):
|
1245 |
+
print(f"out: {i} {j} {k}", '='*50)
|
1246 |
+
print("up", scale)
|
1247 |
+
print(block.__class__.__name__, torch.sum(torch.isnan(x)))
|
1248 |
+
if j < len(repmap):
|
1249 |
+
x = repmap[j](x)
|
1250 |
+
print('-- pre upscaler ---')
|
1251 |
+
print(check_scale(x))
|
1252 |
+
x = upscaler(x)
|
1253 |
+
print('-- post upscaler ---')
|
1254 |
+
print(check_scale(x))
|
1255 |
+
if now_factor > 1:
|
1256 |
+
if isinstance(upscaler, UpDownBlock2d):
|
1257 |
+
upscaler.blocks[1].weight.data /= now_factor
|
1258 |
+
upscaler.blocks[1].bias.data /= now_factor
|
1259 |
+
scale = check_scale(x)
|
1260 |
+
if scale > 5:
|
1261 |
+
print('='*50)
|
1262 |
+
print("upscaler", check_scale(x))
|
1263 |
+
return x
|
1264 |
+
|
1265 |
+
def forward(self, x, r, clip_text, clip_text_pooled, clip_img, cnet=None, **kwargs):
|
1266 |
+
# Process the conditioning embeddings
|
1267 |
+
r_embed = self.gen_r_embedding(r)
|
1268 |
+
for c in self.t_conds:
|
1269 |
+
t_cond = kwargs.get(c, torch.zeros_like(r))
|
1270 |
+
r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond)], dim=1)
|
1271 |
+
clip = self.gen_c_embeddings(clip_text, clip_text_pooled, clip_img)
|
1272 |
+
|
1273 |
+
# Model Blocks
|
1274 |
+
x = self.embedding(x)
|
1275 |
+
print(check_scale(x))
|
1276 |
+
# ControlNet is not supported yet
|
1277 |
+
# if cnet is not None:
|
1278 |
+
# cnet = ControlNetDeliverer(cnet)
|
1279 |
+
level_outputs = self._down_encode(x, r_embed, clip, cnet)
|
1280 |
+
x1 = self._up_decode(level_outputs, r_embed, clip, cnet)
|
1281 |
+
result1 = self.clf(x1)
|
1282 |
+
#return result1
|
1283 |
+
self.half()
|
1284 |
+
sd = convert_state_dict_normal_attn_to_mha(self.state_dict())
|
1285 |
+
x2 = self._up_decode(level_outputs, r_embed, clip, cnet)
|
1286 |
+
result2 = self.clf(x2)
|
1287 |
+
print(torch.nn.functional.mse_loss(result1, result2))
|
1288 |
+
from safetensors.torch import save_file
|
1289 |
+
save_file(sd, f'{fp16_fix_save_path}/factor5_pass4.safetensors')
|
1290 |
+
raise Exception("Early Stop")
|
1291 |
+
|
1292 |
+
def update_weights_ema(self, src_model, beta=0.999):
|
1293 |
+
for self_params, src_params in zip(self.parameters(), src_model.parameters()):
|
1294 |
+
self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
|
1295 |
+
for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
|
1296 |
+
self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)
|
1297 |
+
|
1298 |
+
@property
|
1299 |
+
def device(self):
|
1300 |
+
return next(self.parameters()).device
|
1301 |
+
|
1302 |
+
@property
|
1303 |
+
def dtype(self):
|
1304 |
+
return next(self.parameters()).dtype
|
1305 |
+
|
1306 |
+
|
1307 |
+
# Fast Decoder for Stage C latents. E.g. 16 x 24 x 24 -> 3 x 192 x 192
|
1308 |
+
class Previewer(nn.Module):
|
1309 |
+
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
1310 |
+
super().__init__()
|
1311 |
+
self.blocks = nn.Sequential(
|
1312 |
+
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
1313 |
+
nn.GELU(),
|
1314 |
+
nn.BatchNorm2d(c_hidden),
|
1315 |
+
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
1316 |
+
nn.GELU(),
|
1317 |
+
nn.BatchNorm2d(c_hidden),
|
1318 |
+
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
1319 |
+
nn.GELU(),
|
1320 |
+
nn.BatchNorm2d(c_hidden // 2),
|
1321 |
+
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
1322 |
+
nn.GELU(),
|
1323 |
+
nn.BatchNorm2d(c_hidden // 2),
|
1324 |
+
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
1325 |
+
nn.GELU(),
|
1326 |
+
nn.BatchNorm2d(c_hidden // 4),
|
1327 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
1328 |
+
nn.GELU(),
|
1329 |
+
nn.BatchNorm2d(c_hidden // 4),
|
1330 |
+
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
1331 |
+
nn.GELU(),
|
1332 |
+
nn.BatchNorm2d(c_hidden // 4),
|
1333 |
+
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
1334 |
+
nn.GELU(),
|
1335 |
+
nn.BatchNorm2d(c_hidden // 4),
|
1336 |
+
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
def forward(self, x):
|
1340 |
+
return self.blocks(x)
|
1341 |
+
|
1342 |
+
@property
|
1343 |
+
def device(self):
|
1344 |
+
return next(self.parameters()).device
|
1345 |
+
|
1346 |
+
@property
|
1347 |
+
def dtype(self):
|
1348 |
+
return next(self.parameters()).dtype
|
1349 |
+
|
1350 |
+
|
1351 |
+
def get_clip_conditions(captions: Optional[List[str]], input_ids, tokenizer, text_model):
|
1352 |
+
# deprecated
|
1353 |
+
|
1354 |
+
# self, batch: dict, tokenizer, text_model, is_eval=False, is_unconditional=False, eval_image_embeds=False, return_fields=None
|
1355 |
+
# is_eval の処理をここでやるのは微妙なので別のところでやる
|
1356 |
+
# is_unconditional もここでやるのは微妙なので別のところでやる
|
1357 |
+
# clip_image はとりあえずサポートしない
|
1358 |
+
if captions is not None:
|
1359 |
+
clip_tokens_unpooled = tokenizer(
|
1360 |
+
captions, truncation=True, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
|
1361 |
+
).to(text_model.device)
|
1362 |
+
text_encoder_output = text_model(**clip_tokens_unpooled, output_hidden_states=True)
|
1363 |
+
else:
|
1364 |
+
text_encoder_output = text_model(input_ids, output_hidden_states=True)
|
1365 |
+
|
1366 |
+
text_embeddings = text_encoder_output.hidden_states[-1]
|
1367 |
+
text_pooled_embeddings = text_encoder_output.text_embeds.unsqueeze(1)
|
1368 |
+
|
1369 |
+
return text_embeddings, text_pooled_embeddings
|
1370 |
+
# return {"clip_text": text_embeddings, "clip_text_pooled": text_pooled_embeddings} # , "clip_img": image_embeddings}
|
1371 |
+
|
1372 |
+
|
1373 |
+
# region gdf
|
1374 |
+
|
1375 |
+
|
1376 |
+
class SimpleSampler:
|
1377 |
+
def __init__(self, gdf):
|
1378 |
+
self.gdf = gdf
|
1379 |
+
self.current_step = -1
|
1380 |
+
|
1381 |
+
def __call__(self, *args, **kwargs):
|
1382 |
+
self.current_step += 1
|
1383 |
+
return self.step(*args, **kwargs)
|
1384 |
+
|
1385 |
+
def init_x(self, shape):
|
1386 |
+
return torch.randn(*shape)
|
1387 |
+
|
1388 |
+
def step(self, x, x0, epsilon, logSNR, logSNR_prev):
|
1389 |
+
raise NotImplementedError("You should override the 'apply' function.")
|
1390 |
+
|
1391 |
+
|
1392 |
+
class DDIMSampler(SimpleSampler):
|
1393 |
+
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=0):
|
1394 |
+
a, b = self.gdf.input_scaler(logSNR)
|
1395 |
+
if len(a.shape) == 1:
|
1396 |
+
a, b = a.view(-1, *[1] * (len(x0.shape) - 1)), b.view(-1, *[1] * (len(x0.shape) - 1))
|
1397 |
+
|
1398 |
+
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev)
|
1399 |
+
if len(a_prev.shape) == 1:
|
1400 |
+
a_prev, b_prev = a_prev.view(-1, *[1] * (len(x0.shape) - 1)), b_prev.view(-1, *[1] * (len(x0.shape) - 1))
|
1401 |
+
|
1402 |
+
sigma_tau = eta * (b_prev**2 / b**2).sqrt() * (1 - a**2 / a_prev**2).sqrt() if eta > 0 else 0
|
1403 |
+
# x = a_prev * x0 + (1 - a_prev**2 - sigma_tau ** 2).sqrt() * epsilon + sigma_tau * torch.randn_like(x0)
|
1404 |
+
x = a_prev * x0 + (b_prev**2 - sigma_tau**2).sqrt() * epsilon + sigma_tau * torch.randn_like(x0)
|
1405 |
+
return x
|
1406 |
+
|
1407 |
+
|
1408 |
+
class DDPMSampler(DDIMSampler):
|
1409 |
+
def step(self, x, x0, epsilon, logSNR, logSNR_prev, eta=1):
|
1410 |
+
return super().step(x, x0, epsilon, logSNR, logSNR_prev, eta)
|
1411 |
+
|
1412 |
+
|
1413 |
+
class LCMSampler(SimpleSampler):
|
1414 |
+
def step(self, x, x0, epsilon, logSNR, logSNR_prev):
|
1415 |
+
a_prev, b_prev = self.gdf.input_scaler(logSNR_prev)
|
1416 |
+
if len(a_prev.shape) == 1:
|
1417 |
+
a_prev, b_prev = a_prev.view(-1, *[1] * (len(x0.shape) - 1)), b_prev.view(-1, *[1] * (len(x0.shape) - 1))
|
1418 |
+
return x0 * a_prev + torch.randn_like(epsilon) * b_prev
|
1419 |
+
|
1420 |
+
|
1421 |
+
class GDF:
|
1422 |
+
def __init__(self, schedule, input_scaler, target, noise_cond, loss_weight, offset_noise=0):
|
1423 |
+
self.schedule = schedule
|
1424 |
+
self.input_scaler = input_scaler
|
1425 |
+
self.target = target
|
1426 |
+
self.noise_cond = noise_cond
|
1427 |
+
self.loss_weight = loss_weight
|
1428 |
+
self.offset_noise = offset_noise
|
1429 |
+
|
1430 |
+
def setup_limits(self, stretch_max=True, stretch_min=True, shift=1):
|
1431 |
+
stretched_limits = self.input_scaler.setup_limits(self.schedule, self.input_scaler, stretch_max, stretch_min, shift)
|
1432 |
+
return stretched_limits
|
1433 |
+
|
1434 |
+
def diffuse(self, x0, epsilon=None, t=None, shift=1, loss_shift=1, offset=None):
|
1435 |
+
if epsilon is None:
|
1436 |
+
epsilon = torch.randn_like(x0)
|
1437 |
+
if self.offset_noise > 0:
|
1438 |
+
if offset is None:
|
1439 |
+
offset = torch.randn([x0.size(0), x0.size(1)] + [1] * (len(x0.shape) - 2)).to(x0.device)
|
1440 |
+
epsilon = epsilon + offset * self.offset_noise
|
1441 |
+
logSNR = self.schedule(x0.size(0) if t is None else t, shift=shift).to(x0.device)
|
1442 |
+
a, b = self.input_scaler(logSNR) # B
|
1443 |
+
if len(a.shape) == 1:
|
1444 |
+
a, b = a.view(-1, *[1] * (len(x0.shape) - 1)), b.view(-1, *[1] * (len(x0.shape) - 1)) # BxCxHxW
|
1445 |
+
target = self.target(x0, epsilon, logSNR, a, b)
|
1446 |
+
|
1447 |
+
# noised, noise, logSNR, t_cond
|
1448 |
+
return x0 * a + epsilon * b, epsilon, target, logSNR, self.noise_cond(logSNR), self.loss_weight(logSNR, shift=loss_shift)
|
1449 |
+
|
1450 |
+
def undiffuse(self, x, logSNR, pred):
|
1451 |
+
a, b = self.input_scaler(logSNR)
|
1452 |
+
if len(a.shape) == 1:
|
1453 |
+
a, b = a.view(-1, *[1] * (len(x.shape) - 1)), b.view(-1, *[1] * (len(x.shape) - 1))
|
1454 |
+
return self.target.x0(x, pred, logSNR, a, b), self.target.epsilon(x, pred, logSNR, a, b)
|
1455 |
+
|
1456 |
+
def sample(
|
1457 |
+
self,
|
1458 |
+
model,
|
1459 |
+
model_inputs,
|
1460 |
+
shape,
|
1461 |
+
unconditional_inputs=None,
|
1462 |
+
sampler=None,
|
1463 |
+
schedule=None,
|
1464 |
+
t_start=1.0,
|
1465 |
+
t_end=0.0,
|
1466 |
+
timesteps=20,
|
1467 |
+
x_init=None,
|
1468 |
+
cfg=3.0,
|
1469 |
+
cfg_t_stop=None,
|
1470 |
+
cfg_t_start=None,
|
1471 |
+
cfg_rho=0.7,
|
1472 |
+
sampler_params=None,
|
1473 |
+
shift=1,
|
1474 |
+
device="cpu",
|
1475 |
+
):
|
1476 |
+
sampler_params = {} if sampler_params is None else sampler_params
|
1477 |
+
if sampler is None:
|
1478 |
+
sampler = DDPMSampler(self)
|
1479 |
+
r_range = torch.linspace(t_start, t_end, timesteps + 1)
|
1480 |
+
schedule = self.schedule if schedule is None else schedule
|
1481 |
+
logSNR_range = schedule(r_range, shift=shift)[:, None].expand(-1, shape[0] if x_init is None else x_init.size(0)).to(device)
|
1482 |
+
|
1483 |
+
x = sampler.init_x(shape).to(device) if x_init is None else x_init.clone()
|
1484 |
+
if cfg is not None:
|
1485 |
+
if unconditional_inputs is None:
|
1486 |
+
unconditional_inputs = {k: torch.zeros_like(v) for k, v in model_inputs.items()}
|
1487 |
+
model_inputs = {
|
1488 |
+
k: (
|
1489 |
+
torch.cat([v, v_u], dim=0)
|
1490 |
+
if isinstance(v, torch.Tensor)
|
1491 |
+
else (
|
1492 |
+
[
|
1493 |
+
(
|
1494 |
+
torch.cat([vi, vi_u], dim=0)
|
1495 |
+
if isinstance(vi, torch.Tensor) and isinstance(vi_u, torch.Tensor)
|
1496 |
+
else None
|
1497 |
+
)
|
1498 |
+
for vi, vi_u in zip(v, v_u)
|
1499 |
+
]
|
1500 |
+
if isinstance(v, list)
|
1501 |
+
else (
|
1502 |
+
{vk: torch.cat([v[vk], v_u.get(vk, torch.zeros_like(v[vk]))], dim=0) for vk in v}
|
1503 |
+
if isinstance(v, dict)
|
1504 |
+
else None
|
1505 |
+
)
|
1506 |
+
)
|
1507 |
+
)
|
1508 |
+
for (k, v), (k_u, v_u) in zip(model_inputs.items(), unconditional_inputs.items())
|
1509 |
+
}
|
1510 |
+
for i in range(0, timesteps):
|
1511 |
+
noise_cond = self.noise_cond(logSNR_range[i])
|
1512 |
+
if (
|
1513 |
+
cfg is not None
|
1514 |
+
and (cfg_t_stop is None or r_range[i].item() >= cfg_t_stop)
|
1515 |
+
and (cfg_t_start is None or r_range[i].item() <= cfg_t_start)
|
1516 |
+
):
|
1517 |
+
cfg_val = cfg
|
1518 |
+
if isinstance(cfg_val, (list, tuple)):
|
1519 |
+
assert len(cfg_val) == 2, "cfg must be a float or a list/tuple of length 2"
|
1520 |
+
cfg_val = cfg_val[0] * r_range[i].item() + cfg_val[1] * (1 - r_range[i].item())
|
1521 |
+
pred, pred_unconditional = model(torch.cat([x, x], dim=0), noise_cond.repeat(2), **model_inputs).chunk(2)
|
1522 |
+
pred_cfg = torch.lerp(pred_unconditional, pred, cfg_val)
|
1523 |
+
if cfg_rho > 0:
|
1524 |
+
std_pos, std_cfg = pred.std(), pred_cfg.std()
|
1525 |
+
pred = cfg_rho * (pred_cfg * std_pos / (std_cfg + 1e-9)) + pred_cfg * (1 - cfg_rho)
|
1526 |
+
else:
|
1527 |
+
pred = pred_cfg
|
1528 |
+
else:
|
1529 |
+
pred = model(x, noise_cond, **model_inputs)
|
1530 |
+
x0, epsilon = self.undiffuse(x, logSNR_range[i], pred)
|
1531 |
+
x = sampler(x, x0, epsilon, logSNR_range[i], logSNR_range[i + 1], **sampler_params)
|
1532 |
+
altered_vars = yield (x0, x, pred)
|
1533 |
+
|
1534 |
+
# Update some running variables if the user wants
|
1535 |
+
if altered_vars is not None:
|
1536 |
+
cfg = altered_vars.get("cfg", cfg)
|
1537 |
+
cfg_rho = altered_vars.get("cfg_rho", cfg_rho)
|
1538 |
+
sampler = altered_vars.get("sampler", sampler)
|
1539 |
+
model_inputs = altered_vars.get("model_inputs", model_inputs)
|
1540 |
+
x = altered_vars.get("x", x)
|
1541 |
+
x_init = altered_vars.get("x_init", x_init)
|
1542 |
+
|
1543 |
+
|
1544 |
+
class BaseSchedule:
|
1545 |
+
def __init__(self, *args, force_limits=True, discrete_steps=None, shift=1, **kwargs):
|
1546 |
+
self.setup(*args, **kwargs)
|
1547 |
+
self.limits = None
|
1548 |
+
self.discrete_steps = discrete_steps
|
1549 |
+
self.shift = shift
|
1550 |
+
if force_limits:
|
1551 |
+
self.reset_limits()
|
1552 |
+
|
1553 |
+
def reset_limits(self, shift=1, disable=False):
|
1554 |
+
try:
|
1555 |
+
self.limits = None if disable else self(torch.tensor([1.0, 0.0]), shift=shift).tolist() # min, max
|
1556 |
+
return self.limits
|
1557 |
+
except Exception:
|
1558 |
+
print("WARNING: this schedule doesn't support t and will be unbounded")
|
1559 |
+
return None
|
1560 |
+
|
1561 |
+
def setup(self, *args, **kwargs):
|
1562 |
+
raise NotImplementedError("this method needs to be overridden")
|
1563 |
+
|
1564 |
+
def schedule(self, *args, **kwargs):
|
1565 |
+
raise NotImplementedError("this method needs to be overridden")
|
1566 |
+
|
1567 |
+
def __call__(self, t, *args, shift=1, **kwargs):
|
1568 |
+
if isinstance(t, torch.Tensor):
|
1569 |
+
batch_size = None
|
1570 |
+
if self.discrete_steps is not None:
|
1571 |
+
if t.dtype != torch.long:
|
1572 |
+
t = (t * (self.discrete_steps - 1)).round().long()
|
1573 |
+
t = t / (self.discrete_steps - 1)
|
1574 |
+
t = t.clamp(0, 1)
|
1575 |
+
else:
|
1576 |
+
batch_size = t
|
1577 |
+
t = None
|
1578 |
+
logSNR = self.schedule(t, batch_size, *args, **kwargs)
|
1579 |
+
if shift * self.shift != 1:
|
1580 |
+
logSNR += 2 * np.log(1 / (shift * self.shift))
|
1581 |
+
if self.limits is not None:
|
1582 |
+
logSNR = logSNR.clamp(*self.limits)
|
1583 |
+
return logSNR
|
1584 |
+
|
1585 |
+
|
1586 |
+
class CosineSchedule(BaseSchedule):
|
1587 |
+
def setup(self, s=0.008, clamp_range=[0.0001, 0.9999], norm_instead=False):
|
1588 |
+
self.s = torch.tensor([s])
|
1589 |
+
self.clamp_range = clamp_range
|
1590 |
+
self.norm_instead = norm_instead
|
1591 |
+
self.min_var = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2
|
1592 |
+
|
1593 |
+
def schedule(self, t, batch_size):
|
1594 |
+
if t is None:
|
1595 |
+
t = (1 - torch.rand(batch_size)).add(0.001).clamp(0.001, 1.0)
|
1596 |
+
s, min_var = self.s.to(t.device), self.min_var.to(t.device)
|
1597 |
+
var = torch.cos((s + t) / (1 + s) * torch.pi * 0.5).clamp(0, 1) ** 2 / min_var
|
1598 |
+
if self.norm_instead:
|
1599 |
+
var = var * (self.clamp_range[1] - self.clamp_range[0]) + self.clamp_range[0]
|
1600 |
+
else:
|
1601 |
+
var = var.clamp(*self.clamp_range)
|
1602 |
+
logSNR = (var / (1 - var)).log()
|
1603 |
+
return logSNR
|
1604 |
+
|
1605 |
+
|
1606 |
+
class BaseScaler:
|
1607 |
+
def __init__(self):
|
1608 |
+
self.stretched_limits = None
|
1609 |
+
|
1610 |
+
def setup_limits(self, schedule, input_scaler, stretch_max=True, stretch_min=True, shift=1):
|
1611 |
+
min_logSNR = schedule(torch.ones(1), shift=shift)
|
1612 |
+
max_logSNR = schedule(torch.zeros(1), shift=shift)
|
1613 |
+
|
1614 |
+
min_a, max_b = [v.item() for v in input_scaler(min_logSNR)] if stretch_max else [0, 1]
|
1615 |
+
max_a, min_b = [v.item() for v in input_scaler(max_logSNR)] if stretch_min else [1, 0]
|
1616 |
+
self.stretched_limits = [min_a, max_a, min_b, max_b]
|
1617 |
+
return self.stretched_limits
|
1618 |
+
|
1619 |
+
def stretch_limits(self, a, b):
|
1620 |
+
min_a, max_a, min_b, max_b = self.stretched_limits
|
1621 |
+
return (a - min_a) / (max_a - min_a), (b - min_b) / (max_b - min_b)
|
1622 |
+
|
1623 |
+
def scalers(self, logSNR):
|
1624 |
+
raise NotImplementedError("this method needs to be overridden")
|
1625 |
+
|
1626 |
+
def __call__(self, logSNR):
|
1627 |
+
a, b = self.scalers(logSNR)
|
1628 |
+
if self.stretched_limits is not None:
|
1629 |
+
a, b = self.stretch_limits(a, b)
|
1630 |
+
return a, b
|
1631 |
+
|
1632 |
+
|
1633 |
+
class VPScaler(BaseScaler):
|
1634 |
+
def scalers(self, logSNR):
|
1635 |
+
a_squared = logSNR.sigmoid()
|
1636 |
+
a = a_squared.sqrt()
|
1637 |
+
b = (1 - a_squared).sqrt()
|
1638 |
+
return a, b
|
1639 |
+
|
1640 |
+
|
1641 |
+
class EpsilonTarget:
|
1642 |
+
def __call__(self, x0, epsilon, logSNR, a, b):
|
1643 |
+
return epsilon
|
1644 |
+
|
1645 |
+
def x0(self, noised, pred, logSNR, a, b):
|
1646 |
+
return (noised - pred * b) / a
|
1647 |
+
|
1648 |
+
def epsilon(self, noised, pred, logSNR, a, b):
|
1649 |
+
return pred
|
1650 |
+
|
1651 |
+
|
1652 |
+
class BaseNoiseCond:
|
1653 |
+
def __init__(self, *args, shift=1, clamp_range=None, **kwargs):
|
1654 |
+
clamp_range = [-1e9, 1e9] if clamp_range is None else clamp_range
|
1655 |
+
self.shift = shift
|
1656 |
+
self.clamp_range = clamp_range
|
1657 |
+
self.setup(*args, **kwargs)
|
1658 |
+
|
1659 |
+
def setup(self, *args, **kwargs):
|
1660 |
+
pass # this method is optional, override it if required
|
1661 |
+
|
1662 |
+
def cond(self, logSNR):
|
1663 |
+
raise NotImplementedError("this method needs to be overridden")
|
1664 |
+
|
1665 |
+
def __call__(self, logSNR):
|
1666 |
+
if self.shift != 1:
|
1667 |
+
logSNR = logSNR.clone() + 2 * np.log(self.shift)
|
1668 |
+
return self.cond(logSNR).clamp(*self.clamp_range)
|
1669 |
+
|
1670 |
+
|
1671 |
+
class CosineTNoiseCond(BaseNoiseCond):
|
1672 |
+
def setup(self, s=0.008, clamp_range=[0, 1]): # [0.0001, 0.9999]
|
1673 |
+
self.s = torch.tensor([s])
|
1674 |
+
self.clamp_range = clamp_range
|
1675 |
+
self.min_var = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2
|
1676 |
+
|
1677 |
+
def cond(self, logSNR):
|
1678 |
+
var = logSNR.sigmoid()
|
1679 |
+
var = var.clamp(*self.clamp_range)
|
1680 |
+
s, min_var = self.s.to(var.device), self.min_var.to(var.device)
|
1681 |
+
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
|
1682 |
+
return t
|
1683 |
+
|
1684 |
+
|
1685 |
+
# --- Loss Weighting
|
1686 |
+
class BaseLossWeight:
|
1687 |
+
def weight(self, logSNR):
|
1688 |
+
raise NotImplementedError("this method needs to be overridden")
|
1689 |
+
|
1690 |
+
def __call__(self, logSNR, *args, shift=1, clamp_range=None, **kwargs):
|
1691 |
+
clamp_range = [-1e9, 1e9] if clamp_range is None else clamp_range
|
1692 |
+
if shift != 1:
|
1693 |
+
logSNR = logSNR.clone() + 2 * np.log(shift)
|
1694 |
+
return self.weight(logSNR, *args, **kwargs).clamp(*clamp_range)
|
1695 |
+
|
1696 |
+
|
1697 |
+
# class ComposedLossWeight(BaseLossWeight):
|
1698 |
+
# def __init__(self, div, mul):
|
1699 |
+
# self.mul = [mul] if isinstance(mul, BaseLossWeight) else mul
|
1700 |
+
# self.div = [div] if isinstance(div, BaseLossWeight) else div
|
1701 |
+
|
1702 |
+
# def weight(self, logSNR):
|
1703 |
+
# prod, div = 1, 1
|
1704 |
+
# for m in self.mul:
|
1705 |
+
# prod *= m.weight(logSNR)
|
1706 |
+
# for d in self.div:
|
1707 |
+
# div *= d.weight(logSNR)
|
1708 |
+
# return prod/div
|
1709 |
+
|
1710 |
+
# class ConstantLossWeight(BaseLossWeight):
|
1711 |
+
# def __init__(self, v=1):
|
1712 |
+
# self.v = v
|
1713 |
+
|
1714 |
+
# def weight(self, logSNR):
|
1715 |
+
# return torch.ones_like(logSNR) * self.v
|
1716 |
+
|
1717 |
+
# class SNRLossWeight(BaseLossWeight):
|
1718 |
+
# def weight(self, logSNR):
|
1719 |
+
# return logSNR.exp()
|
1720 |
+
|
1721 |
+
|
1722 |
+
class P2LossWeight(BaseLossWeight):
|
1723 |
+
def __init__(self, k=1.0, gamma=1.0, s=1.0):
|
1724 |
+
self.k, self.gamma, self.s = k, gamma, s
|
1725 |
+
|
1726 |
+
def weight(self, logSNR):
|
1727 |
+
return (self.k + (logSNR * self.s).exp()) ** -self.gamma
|
1728 |
+
|
1729 |
+
|
1730 |
+
# class SNRPlusOneLossWeight(BaseLossWeight):
|
1731 |
+
# def weight(self, logSNR):
|
1732 |
+
# return logSNR.exp() + 1
|
1733 |
+
|
1734 |
+
# class MinSNRLossWeight(BaseLossWeight):
|
1735 |
+
# def __init__(self, max_snr=5):
|
1736 |
+
# self.max_snr = max_snr
|
1737 |
+
|
1738 |
+
# def weight(self, logSNR):
|
1739 |
+
# return logSNR.exp().clamp(max=self.max_snr)
|
1740 |
+
|
1741 |
+
# class MinSNRPlusOneLossWeight(BaseLossWeight):
|
1742 |
+
# def __init__(self, max_snr=5):
|
1743 |
+
# self.max_snr = max_snr
|
1744 |
+
|
1745 |
+
# def weight(self, logSNR):
|
1746 |
+
# return (logSNR.exp() + 1).clamp(max=self.max_snr)
|
1747 |
+
|
1748 |
+
# class TruncatedSNRLossWeight(BaseLossWeight):
|
1749 |
+
# def __init__(self, min_snr=1):
|
1750 |
+
# self.min_snr = min_snr
|
1751 |
+
|
1752 |
+
# def weight(self, logSNR):
|
1753 |
+
# return logSNR.exp().clamp(min=self.min_snr)
|
1754 |
+
|
1755 |
+
# class SechLossWeight(BaseLossWeight):
|
1756 |
+
# def __init__(self, div=2):
|
1757 |
+
# self.div = div
|
1758 |
+
|
1759 |
+
# def weight(self, logSNR):
|
1760 |
+
# return 1/(logSNR/self.div).cosh()
|
1761 |
+
|
1762 |
+
# class DebiasedLossWeight(BaseLossWeight):
|
1763 |
+
# def weight(self, logSNR):
|
1764 |
+
# return 1/logSNR.exp().sqrt()
|
1765 |
+
|
1766 |
+
# class SigmoidLossWeight(BaseLossWeight):
|
1767 |
+
# def __init__(self, s=1):
|
1768 |
+
# self.s = s
|
1769 |
+
|
1770 |
+
# def weight(self, logSNR):
|
1771 |
+
# return (logSNR * self.s).sigmoid()
|
1772 |
+
|
1773 |
+
|
1774 |
+
class AdaptiveLossWeight(BaseLossWeight):
|
1775 |
+
def __init__(self, logsnr_range=[-10, 10], buckets=300, weight_range=[1e-7, 1e7]):
|
1776 |
+
self.bucket_ranges = torch.linspace(logsnr_range[0], logsnr_range[1], buckets - 1)
|
1777 |
+
self.bucket_losses = torch.ones(buckets)
|
1778 |
+
self.weight_range = weight_range
|
1779 |
+
|
1780 |
+
def weight(self, logSNR):
|
1781 |
+
indices = torch.searchsorted(self.bucket_ranges.to(logSNR.device), logSNR)
|
1782 |
+
return (1 / self.bucket_losses.to(logSNR.device)[indices]).clamp(*self.weight_range)
|
1783 |
+
|
1784 |
+
def update_buckets(self, logSNR, loss, beta=0.99):
|
1785 |
+
indices = torch.searchsorted(self.bucket_ranges.to(logSNR.device), logSNR).cpu()
|
1786 |
+
self.bucket_losses[indices] = self.bucket_losses[indices] * beta + loss.detach().cpu() * (1 - beta)
|
1787 |
+
|
1788 |
+
|
1789 |
+
# endregion gdf
|