Doctor-Shotgun commited on
Commit
4b11084
1 Parent(s): 95eaaa9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -14
README.md CHANGED
@@ -4,29 +4,79 @@ tags:
4
  - generated_from_trainer
5
  base_model: mistralai/Mixtral-8x7B-v0.1
6
  model-index:
7
- - name: workspace/volume/mixtral-limarp-qlora-out
8
  results: []
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
- # workspace/volume/mixtral-limarp-qlora-out
16
 
17
- This model was trained from scratch on the None dataset.
18
 
19
  ## Model description
20
 
21
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  ## Intended uses & limitations
24
 
25
- More information needed
26
 
27
  ## Training and evaluation data
28
 
29
- More information needed
30
 
31
  ## Training procedure
32
 
@@ -44,10 +94,6 @@ The following hyperparameters were used during training:
44
  - lr_scheduler_warmup_steps: 10
45
  - num_epochs: 3
46
 
47
- ### Training results
48
-
49
-
50
-
51
  ### Framework versions
52
 
53
  - Transformers 4.37.0.dev0
@@ -72,4 +118,4 @@ The following `bitsandbytes` quantization config was used during training:
72
  ### Framework versions
73
 
74
 
75
- - PEFT 0.6.0
 
4
  - generated_from_trainer
5
  base_model: mistralai/Mixtral-8x7B-v0.1
6
  model-index:
7
+ - name: limarp-zloss-mixtral-8x7b-qlora
8
  results: []
9
+ datasets:
10
+ - lemonilia/LimaRP
11
+ language:
12
+ - en
13
+ license: apache-2.0
14
  ---
15
 
 
 
 
16
  [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ # limarp-zloss-mixtral-8x7b-qlora
18
 
19
+ Experimental limarp qlora trained at 10k ctx length (greater than size of the longest limarp sample when tokenized via mistral's tokenizer) on [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [Charles Goddard](https://huggingface.co/chargoddard)'s ZLoss and Megablocks-based fork of transformers.
20
 
21
  ## Model description
22
 
23
+ The intended prompt format is the Alpaca instruction format of LimaRP v3:
24
+ ```
25
+ ### Instruction:
26
+ Character's Persona: {bot character description}
27
+
28
+ User's Persona: {user character description}
29
+
30
+ Scenario: {what happens in the story}
31
+
32
+ Play the role of Character. Taking the above information into consideration, you must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User.
33
+
34
+ ### Input:
35
+ User: {utterance}
36
+
37
+ ### Response:
38
+ Character: {utterance}
39
+
40
+ ### Input:
41
+ User: {utterance}
42
+
43
+ ### Response:
44
+ Character: {utterance}
45
+
46
+ (etc.)
47
+ ```
48
+ Inspired by the previously named "Roleplay" preset in SillyTavern, with this version of LimaRP it is possible to append a length modifier to the response instruction sequence, like this:
49
+
50
+ ```
51
+ ### Input
52
+ User: {utterance}
53
+
54
+ ### Response: (length = medium)
55
+ Character: {utterance}
56
+ ```
57
+
58
+ This has an immediately noticeable effect on bot responses. The lengths using during training are:
59
+ `micro`, `tiny`, `short`, `medium`, `long`, `massive`, `huge`, `enormous`, `humongous`, `unlimited`.
60
+ **The recommended starting length is medium**. Keep in mind that the AI can ramble or impersonate
61
+ the user with very long messages.
62
+
63
+ The length control effect is reproducible, but the messages will not necessarily follow
64
+ lengths very precisely, rather follow certain ranges on average, as seen in this table
65
+ with data from tests made with one reply at the beginning of the conversation:
66
+
67
+ ![lengths](https://i.imgur.com/2WXGgaV.png)
68
+
69
+ Response length control appears to work well also deep into the conversation. **By omitting
70
+ the modifier, the model will choose the most appropriate response length** (although it might
71
+ not necessarily be what the user desires).
72
 
73
  ## Intended uses & limitations
74
 
75
+ The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model.
76
 
77
  ## Training and evaluation data
78
 
79
+ For more details about LimaRP, see the dataset page.
80
 
81
  ## Training procedure
82
 
 
94
  - lr_scheduler_warmup_steps: 10
95
  - num_epochs: 3
96
 
 
 
 
 
97
  ### Framework versions
98
 
99
  - Transformers 4.37.0.dev0
 
118
  ### Framework versions
119
 
120
 
121
+ - PEFT 0.6.0