DorinSht commited on
Commit
a58bc5e
1 Parent(s): 9321758

Training in progress, step 1000

Browse files
cmd.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ /var/spool/slurmd/job117568/slurm_script 05-06_03-05
commit.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ commit 001432feaa4bcad3e709036376d5dd95b14abfc0
2
+ Author: Shteyman <dshteyma@isl-iam1.rr.intel.com>
3
+ Date: Wed Jun 5 02:59:17 2024 -0700
4
+
5
+ unnecessary file delete
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "JackFram/llama-68m",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 0,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 2,
18
+ "num_key_value_heads": 12,
19
+ "pad_token_id": 1,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 10000.0,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.41.0.dev0",
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
events.out.tfevents.1717581940.isl-gpu3.8841.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa74e7b5cfe6aa38454b4aec704fd8c38a85af75b76f4b1763b5255bc48cb0ee
3
+ size 5694
experiment_code/config/config1.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config_name: "JackFram/llama-68m"
2
+ tokenizer_name: "JackFram/llama-68m"
3
+ validation_split_percentage: 2
4
+ train_file: "/home/dshteyma/shareGPT_data/ShareGPT_V3_unfiltered_cleaned_split.json"
5
+ dataset_name_hub: "anon8231489123/ShareGPT_Vicuna_unfiltered/ShareGPT_V3_unfiltered_cleaned_split.json"
6
+ dataset_name_local: "ShareGPT"
7
+ # max_train_samples: 1000
8
+ # max_eval_samples: 10
9
+ do_train: True
10
+ do_eval: True
11
+ output_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
12
+ overwrite_output_dir: True
13
+ per_device_train_batch_size: 4
14
+ gradient_accumulation_steps: 1
15
+ report_to: "tensorboard"
16
+ logging_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
17
+ logging_steps: 500
18
+ save_steps: 1000
19
+ eval_strategy: "steps"
20
+ eval_steps: 1000
21
+ learning_rate: 0.0001
22
+ gradient_accumulation_steps: 1
23
+ weight_decay: 0.01
24
+ warmup_ratio: 0.05
25
+ push_to_hub: True
26
+ hub_model_id: "DorinSht/ShareGPT_llama2_68M"
27
+ hub_strategy: "all_checkpoints"
28
+
experiment_code/config/config_redpajama.yaml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config_name: "JackFram/llama-68m"
2
+ tokenizer_name: "JackFram/llama-68m"
3
+ validation_split_percentage: 2
4
+ train_file: "/home/dshteyma/target_draft_coupling_code/dataset_dict.json"
5
+ dataset_name_local: "RedPajama"
6
+ dataset_name: "togethercomputer/RedPajama-Data-1T-Sample"
7
+ dataset_name_hub: "togethercomputer/RedPajama-Data-1T-Sample"
8
+ # max_train_samples: 1000
9
+ # max_eval_samples: 10
10
+ do_train: True
11
+ do_eval: True
12
+ output_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
13
+ overwrite_output_dir: True
14
+ per_device_train_batch_size: 4
15
+ gradient_accumulation_steps: 3
16
+ report_to: "tensorboard"
17
+ logging_dir: "/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs"
18
+ logging_steps: 10000
19
+ save_steps: 10000
20
+ eval_strategy: "steps"
21
+ eval_steps: 10000
22
+ learning_rate: 0.0001
23
+ weight_decay: 0.01
24
+ warmup_ratio: 0.05
25
+ push_to_hub: False
26
+ hub_model_id: "DorinSht/llama_68M_redpajama"
27
+ hub_strategy: "all_checkpoints"
experiment_code/prepare_sharegpt.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This script is largely copied from the Vicuna repo: https://github.com/lm-sys/FastChat/blob/main/fastchat/data/split_long_conversation.py
3
+ We fixed a bug in `split_one_sample`, which previously includes long conversations in the processed data. Now we skip these long conversations.
4
+ """
5
+ import argparse
6
+ from concurrent.futures import ProcessPoolExecutor
7
+ import json
8
+ import transformers
9
+ from tqdm import tqdm
10
+
11
+ def shareGPT_pipeline(tokenizer, raw_datasets, overwrite_cache):
12
+
13
+ def preprocess_conversation(convo):
14
+ key_mapping = {"role" : "from", "content" : "value"}
15
+ value_mapping = {"user" : "user", "human" : "user", "gpt" : "assistant", 'system': 'assitant', 'bing': 'assitant', 'chatgpt': 'assitant', 'bard': 'assitant'}
16
+ # mapping = {"human" : "user", "gpt" : "assitant"}
17
+ if value_mapping[convo[0][key_mapping['role']]] != 'user':
18
+ convo = convo[1:]
19
+ preproc_convos_user = [{"role": 'user', "content": convo_elem[key_mapping['content']]} for i, convo_elem in enumerate(convo) if (i % 2 == 0 and value_mapping[convo_elem[key_mapping['role']]] == 'user')]
20
+ preproc_convos_assistant = [{"role": 'assistant', "content": convo_elem[key_mapping['content']]} for i, convo_elem in enumerate(convo) if (i % 2 == 1 and value_mapping[convo_elem[key_mapping['role']]] == 'assistant')]
21
+ if len(preproc_convos_user) != len(preproc_convos_assistant):
22
+ return []
23
+ preproc_convos = [conv_elem for pair in zip(preproc_convos_user, preproc_convos_assistant) for conv_elem in pair]
24
+ return preproc_convos
25
+
26
+ def filter_incorrect_conversations(examples):
27
+ convos = examples["conversations"]
28
+ ids_to_remove = [True if preprocess_conversation(convo) == [] else False for convo in convos]
29
+ return { "ids_to_remove" : ids_to_remove, }
30
+
31
+ def formatting_prompts_func(examples):
32
+ convos = examples["conversations"]
33
+ # preproc_convos = [convo for convo in convos if (convo[0]['from'] == 'human' or convo[0]['from'] == 'user')]
34
+ preproc_convos = [preprocess_conversation(convo) for convo in convos]
35
+ # preproc_convos2 = [preproc_convo for preproc_convo in preproc_convos if preproc_convo[0]['role'] == 'user']
36
+ texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for i, convo in enumerate(preproc_convos)]
37
+ return { "text" : texts,}
38
+
39
+ filtered_datasets = raw_datasets.filter(lambda example: example['conversations'] != [], load_from_cache_file=not overwrite_cache,)
40
+ dataset = filtered_datasets.map(filter_incorrect_conversations, batched = True, load_from_cache_file=not overwrite_cache,)
41
+ filtered_datasets2 = dataset.filter(lambda example: example['ids_to_remove'] == False, load_from_cache_file=not overwrite_cache,)
42
+ raw_datasets_preprocessed = filtered_datasets2.map(formatting_prompts_func, batched = True, load_from_cache_file=not overwrite_cache,)
43
+
44
+ return raw_datasets_preprocessed
experiment_code/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ huggingface-hub==0.22.2
2
+ -e git+https://github.com/huggingface/transformers.git@bbaa8ceff696c479aecdb4575b2deb1349efd3aa#egg=transformers
experiment_code/run_clm.py ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2020 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
18
+
19
+ Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
+ https://huggingface.co/models?filter=text-generation
21
+ """
22
+ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
23
+ import random
24
+ import logging
25
+ import math
26
+ import os
27
+ from datetime import datetime
28
+ import sys
29
+ import warnings
30
+ from dataclasses import dataclass, field
31
+ from itertools import chain
32
+ from typing import Optional
33
+ import datasets
34
+ import evaluate
35
+ import torch
36
+ from datasets import load_dataset
37
+ import argparse
38
+ import transformers
39
+ from prepare_sharegpt import shareGPT_pipeline
40
+ from transformers import (
41
+ CONFIG_MAPPING,
42
+ MODEL_FOR_CAUSAL_LM_MAPPING,
43
+ AutoConfig,
44
+ AutoModelForCausalLM,
45
+ AutoTokenizer,
46
+ HfArgumentParser,
47
+ Trainer,
48
+ TrainingArguments,
49
+ default_data_collator,
50
+ set_seed,
51
+ )
52
+ from transformers.testing_utils import CaptureLogger
53
+ from transformers.trainer_utils import get_last_checkpoint
54
+ from transformers.utils import check_min_version, send_example_telemetry
55
+ from transformers.utils.versions import require_version
56
+ from functools import partial
57
+
58
+ from omegaconf import DictConfig, OmegaConf
59
+ import hydra
60
+
61
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
62
+ check_min_version("4.41.0.dev0")
63
+
64
+ require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
65
+
66
+ logger = logging.getLogger(__name__)
67
+
68
+ MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
69
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
70
+
71
+ random.seed(42)
72
+
73
+ @dataclass
74
+ class ModelArguments:
75
+ """
76
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
77
+ """
78
+
79
+ model_name_or_path: Optional[str] = field(
80
+ default=None,
81
+ metadata={
82
+ "help": (
83
+ "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
84
+ )
85
+ },
86
+ )
87
+ model_type: Optional[str] = field(
88
+ default=None,
89
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
90
+ )
91
+ padding_side: str = field(
92
+ default="right", metadata={"help": "The padding side in tokenizer"}
93
+ )
94
+ config_overrides: Optional[str] = field(
95
+ default=None,
96
+ metadata={
97
+ "help": (
98
+ "Override some existing default config settings when a model is trained from scratch. Example: "
99
+ "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
100
+ )
101
+ },
102
+ )
103
+ config_name: Optional[str] = field(
104
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
105
+ )
106
+ tokenizer_name: Optional[str] = field(
107
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
108
+ )
109
+ cache_dir: Optional[str] = field(
110
+ default=None,
111
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
112
+ )
113
+ use_fast_tokenizer: bool = field(
114
+ default=True,
115
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
116
+ )
117
+ model_revision: str = field(
118
+ default="main",
119
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
120
+ )
121
+ token: str = field(
122
+ default=None,
123
+ metadata={
124
+ "help": (
125
+ "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
126
+ "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
127
+ )
128
+ },
129
+ )
130
+ use_auth_token: bool = field(
131
+ default=None,
132
+ metadata={
133
+ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
134
+ },
135
+ )
136
+ trust_remote_code: bool = field(
137
+ default=True,
138
+ metadata={
139
+ "help": (
140
+ "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
141
+ "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
142
+ "execute code present on the Hub on your local machine."
143
+ )
144
+ },
145
+ )
146
+ torch_dtype: Optional[str] = field(
147
+ default=None,
148
+ metadata={
149
+ "help": (
150
+ "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
151
+ "dtype will be automatically derived from the model's weights."
152
+ ),
153
+ "choices": ["auto", "bfloat16", "float16", "float32"],
154
+ },
155
+ )
156
+ low_cpu_mem_usage: bool = field(
157
+ default=False,
158
+ metadata={
159
+ "help": (
160
+ "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
161
+ "set True will benefit LLM loading time and RAM consumption."
162
+ )
163
+ },
164
+ )
165
+
166
+ def __post_init__(self):
167
+ if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
168
+ raise ValueError(
169
+ "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
170
+ )
171
+
172
+
173
+
174
+ @dataclass
175
+ class DataTrainingArguments:
176
+ """
177
+ Arguments pertaining to what data we are going to input our model for training and eval.
178
+ """
179
+ dataset_name: Optional[str] = field(
180
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
181
+ )
182
+ dataset_name_hub: Optional[str] = field(
183
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
184
+ )
185
+ dataset_name_local: Optional[str] = field(
186
+ default=None, metadata={"help": "The name of the dataset for identification."}
187
+ )
188
+ dataset_config_name: Optional[str] = field(
189
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
190
+ )
191
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
192
+ validation_file: Optional[str] = field(
193
+ default=None,
194
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
195
+ )
196
+ max_train_samples: Optional[int] = field(
197
+ default=None,
198
+ metadata={
199
+ "help": (
200
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
201
+ "value if set."
202
+ )
203
+ },
204
+ )
205
+ max_eval_samples: Optional[int] = field(
206
+ default=None,
207
+ metadata={
208
+ "help": (
209
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
210
+ "value if set."
211
+ )
212
+ },
213
+ )
214
+ streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
215
+ block_size: Optional[int] = field(
216
+ default=None,
217
+ metadata={
218
+ "help": (
219
+ "Optional input sequence length after tokenization. "
220
+ "The training dataset will be truncated in block of this size for training. "
221
+ "Default to the model max input length for single sentence inputs (take into account special tokens)."
222
+ )
223
+ },
224
+ )
225
+ overwrite_cache: bool = field(
226
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
227
+ )
228
+ validation_split_percentage: Optional[int] = field(
229
+ default=5,
230
+ metadata={
231
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
232
+ },
233
+ )
234
+ preprocessing_num_workers: Optional[int] = field(
235
+ default=None,
236
+ metadata={"help": "The number of processes to use for the preprocessing."},
237
+ )
238
+ keep_linebreaks: bool = field(
239
+ default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
240
+ )
241
+ lazy_preprocess: bool = False
242
+
243
+ def __post_init__(self):
244
+ if self.streaming:
245
+ require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
246
+
247
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
248
+ raise ValueError("Need either a dataset name or a training/validation file.")
249
+ else:
250
+ if self.train_file is not None:
251
+ extension = self.train_file.split(".")[-1]
252
+ assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
253
+ if self.validation_file is not None:
254
+ extension = self.validation_file.split(".")[-1]
255
+ assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
256
+
257
+ # @dataclass
258
+ # class TrainingArguments(transformers.TrainingArguments):
259
+ # cache_dir: Optional[str] = field(default=None)
260
+ # optim: str = field(default="adamw_torch")
261
+ # model_max_length: int = field(
262
+ # default=2048,
263
+ # metadata={
264
+ # "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
265
+ # },
266
+ # )
267
+
268
+ def create_output_directory(dir_root_path):
269
+ # Get the current date and time
270
+ current_time = datetime.now()
271
+ # Format the date and time as a string
272
+ # Example format: YYYYMMDD_HHMMSS
273
+ formatted_time = current_time.strftime("%Y%m%d_%H%M%S")
274
+ # Define the directory name with the formatted time
275
+ directory_full_path = os.path.join(dir_root_path, f"training_outputs_{formatted_time}")
276
+ # Create the directory
277
+ os.makedirs(directory_full_path)
278
+ print(f"Directory '{directory_full_path}' created successfully.")
279
+ return directory_full_path
280
+
281
+ def main():
282
+ # See all possible arguments in src/transformers/training_args.py
283
+ # or by passing the --help flag to this script.
284
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
285
+ parser = argparse.ArgumentParser(description="parser for arguments from .py script call")
286
+ parser.add_argument('--output_dir', type=str, help='Path for training_args.output_dir')
287
+ parser.add_argument('--logging_dir', type=str, help='Path for training_args.logging_dir')
288
+ parser.add_argument('--config_file', type=str, help='An additional required option.')
289
+ args = parser.parse_args()
290
+
291
+ parser_hf = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
292
+ if args.config_file is not None and args.output_dir is not None and args.output_dir is not None:
293
+ # If we pass only one argument to the script and it's the path to a json file,
294
+ # let's parse it to get our arguments.
295
+ model_args, data_args, training_args = parser_hf.parse_yaml_file(args.config_file)
296
+ training_args.output_dir = args.output_dir
297
+ training_args.logging_dir = args.logging_dir
298
+ else:
299
+ # use the preset config file defined in the slurm .sh script
300
+ # model_args, data_args, training_args = parser_hf.parse_yaml_file(os.getenv("DEFAULT_CONFIG_FILE"))
301
+ model_args, data_args, training_args = parser_hf.parse_yaml_file('./config/config1.yaml')
302
+
303
+
304
+ if model_args.use_auth_token is not None:
305
+ warnings.warn(
306
+ "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
307
+ FutureWarning,
308
+ )
309
+ if model_args.token is not None:
310
+ raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
311
+ model_args.token = model_args.use_auth_token
312
+
313
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
314
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
315
+ send_example_telemetry("run_clm", model_args, data_args)
316
+
317
+ # Setup logging
318
+ logging.basicConfig(
319
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
320
+ datefmt="%m/%d/%Y %H:%M:%S",
321
+ handlers=[logging.StreamHandler(sys.stdout)],
322
+ )
323
+
324
+ if training_args.should_log:
325
+ # The default of training_args.log_level is passive, so we set log level at info here to have that default.
326
+ transformers.utils.logging.set_verbosity_info()
327
+
328
+ log_level = training_args.get_process_log_level()
329
+ logger.setLevel(log_level)
330
+ datasets.utils.logging.set_verbosity(log_level)
331
+ transformers.utils.logging.set_verbosity(log_level)
332
+ transformers.utils.logging.enable_default_handler()
333
+ transformers.utils.logging.enable_explicit_format()
334
+
335
+ # Log on each process the small summary:
336
+ logger.warning(
337
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
338
+ + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
339
+ )
340
+ logger.info(f"Training/evaluation parameters {training_args}")
341
+
342
+ # Detecting last checkpoint.
343
+ last_checkpoint = None
344
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
345
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
346
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
347
+ raise ValueError(
348
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
349
+ "Use --overwrite_output_dir to overcome."
350
+ )
351
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
352
+ logger.info(
353
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
354
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
355
+ )
356
+
357
+ # Set seed before initializing model.
358
+ set_seed(training_args.seed)
359
+
360
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
361
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
362
+ # (the dataset will be downloaded automatically from the datasets Hub).
363
+ #
364
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
365
+ # 'text' is found. You can easily tweak this behavior (see below).
366
+ #
367
+ # In distributed training, the load_dataset function guarantee that only one local process can concurrently
368
+ # download the dataset.
369
+ if data_args.dataset_name is not None:
370
+ # Downloading and loading a dataset from the hub.
371
+ raw_datasets = load_dataset(
372
+ data_args.dataset_name,
373
+ data_args.dataset_config_name,
374
+ cache_dir=model_args.cache_dir,
375
+ token=model_args.token,
376
+ streaming=data_args.streaming,
377
+ )
378
+ if "validation" not in raw_datasets.keys():
379
+ raw_datasets["validation"] = load_dataset(
380
+ data_args.dataset_name,
381
+ data_args.dataset_config_name,
382
+ split=f"train[:{data_args.validation_split_percentage}%]",
383
+ cache_dir=model_args.cache_dir,
384
+ token=model_args.token,
385
+ streaming=data_args.streaming,
386
+ )
387
+ raw_datasets["train"] = load_dataset(
388
+ data_args.dataset_name,
389
+ data_args.dataset_config_name,
390
+ split=f"train[{data_args.validation_split_percentage}%:]",
391
+ cache_dir=model_args.cache_dir,
392
+ token=model_args.token,
393
+ streaming=data_args.streaming,
394
+ )
395
+ else:
396
+ data_files = {}
397
+ dataset_args = {}
398
+ if data_args.train_file is not None:
399
+ data_files["train"] = data_args.train_file
400
+ if data_args.validation_file is not None:
401
+ data_files["validation"] = data_args.validation_file
402
+ extension = (
403
+ data_args.train_file.split(".")[-1]
404
+ if data_args.train_file is not None
405
+ else data_args.validation_file.split(".")[-1]
406
+ )
407
+ if extension == "txt":
408
+ extension = "text"
409
+ dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
410
+ raw_datasets = load_dataset(
411
+ extension,
412
+ data_files=data_files,
413
+ cache_dir=model_args.cache_dir,
414
+ token=model_args.token,
415
+ **dataset_args,
416
+ )
417
+ # If no validation data is there, validation_split_percentage will be used to divide the dataset.
418
+ if "validation" not in raw_datasets.keys():
419
+ raw_datasets["validation"] = load_dataset(
420
+ extension,
421
+ data_files=data_files,
422
+ split=f"train[:{data_args.validation_split_percentage}%]",
423
+ cache_dir=model_args.cache_dir,
424
+ token=model_args.token,
425
+ **dataset_args,
426
+ )
427
+ raw_datasets["train"] = load_dataset(
428
+ extension,
429
+ data_files=data_files,
430
+ split=f"train[{data_args.validation_split_percentage}%:]",
431
+ cache_dir=model_args.cache_dir,
432
+ token=model_args.token,
433
+ **dataset_args,
434
+ )
435
+
436
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
437
+ # https://huggingface.co/docs/datasets/loading_datasets.
438
+
439
+ # Load pretrained model and tokenizer
440
+ #
441
+ # Distributed training:
442
+ # The .from_pretrained methods guarantee that only one local process can concurrently
443
+ # download model & vocab.
444
+
445
+ config_kwargs = {
446
+ "cache_dir": model_args.cache_dir,
447
+ "revision": model_args.model_revision,
448
+ "token": model_args.token,
449
+ "trust_remote_code": model_args.trust_remote_code,
450
+ }
451
+ if model_args.config_name:
452
+ config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
453
+ elif model_args.model_name_or_path:
454
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
455
+ else:
456
+ config = CONFIG_MAPPING[model_args.model_type]()
457
+ logger.warning("You are instantiating a new config instance from scratch.")
458
+ if model_args.config_overrides is not None:
459
+ logger.info(f"Overriding config: {model_args.config_overrides}")
460
+ config.update_from_string(model_args.config_overrides)
461
+ logger.info(f"New config: {config}")
462
+
463
+ tokenizer_kwargs = {
464
+ "cache_dir": model_args.cache_dir,
465
+ "use_fast": model_args.use_fast_tokenizer,
466
+ "revision": model_args.model_revision,
467
+ "token": model_args.token,
468
+ "padding": 'max_length',
469
+ "trust_remote_code": model_args.trust_remote_code,
470
+ "model_max_length": config.max_position_embeddings,
471
+ "return_tensors":'pt'
472
+ }
473
+ if model_args.tokenizer_name:
474
+ tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
475
+ elif model_args.model_name_or_path:
476
+ tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
477
+ else:
478
+ raise ValueError(
479
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script. "
480
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
481
+ )
482
+ if tokenizer.pad_token != tokenizer.unk_token:
483
+ tokenizer.pad_token = tokenizer.unk_token
484
+
485
+ if model_args.model_name_or_path:
486
+ torch_dtype = (
487
+ model_args.torch_dtype
488
+ if model_args.torch_dtype in ["auto", None]
489
+ else getattr(torch, model_args.torch_dtype)
490
+ )
491
+ model = AutoModelForCausalLM.from_pretrained(
492
+ model_args.model_name_or_path,
493
+ from_tf=bool(".ckpt" in model_args.model_name_or_path),
494
+ config=config,
495
+ cache_dir=model_args.cache_dir,
496
+ revision=model_args.model_revision,
497
+ token=model_args.token,
498
+ trust_remote_code=model_args.trust_remote_code,
499
+ torch_dtype=torch_dtype,
500
+ low_cpu_mem_usage=model_args.low_cpu_mem_usage,
501
+ )
502
+ else:
503
+ model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
504
+ n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
505
+ logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
506
+
507
+ # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
508
+ # on a small vocab and want a smaller embedding size, remove this test.
509
+ embedding_size = model.get_input_embeddings().weight.shape[0]
510
+ if len(tokenizer) > embedding_size:
511
+ model.resize_token_embeddings(len(tokenizer))
512
+
513
+ if "ShareGPT" == data_args.dataset_name_local:
514
+ raw_datasets_preprocessed = shareGPT_pipeline(tokenizer=tokenizer, raw_datasets=raw_datasets, overwrite_cache=data_args.overwrite_cache)
515
+ if "RedPajama" == data_args.dataset_name_local:
516
+ raw_datasets_preprocessed = raw_datasets
517
+
518
+ ### HEREE
519
+ # Preprocessing the datasets.
520
+ # First we tokenize all the texts.
521
+ if training_args.do_train:
522
+ column_names = list(raw_datasets_preprocessed["train"].features)
523
+ else:
524
+ column_names = list(raw_datasets_preprocessed["validation"].features)
525
+ text_column_name = "text"
526
+
527
+
528
+ # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
529
+ tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
530
+
531
+ def tokenize_function(examples):
532
+ with CaptureLogger(tok_logger) as cl:
533
+ # print(tokenizer(examples[text_column_name]))
534
+ # output = tokenizer(examples[text_column_name])
535
+ output = tokenizer(
536
+ examples[text_column_name],
537
+ return_tensors="pt",
538
+ padding="max_length",
539
+ max_length=tokenizer.model_max_length,
540
+ truncation=True,
541
+ )
542
+ # output = input_ids.clone()
543
+ # clm input could be much much longer than block_size
544
+ if "Token indices sequence length is longer than the" in cl.out:
545
+ tok_logger.warning(
546
+ "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
547
+ " before being passed to the model."
548
+ )
549
+ return output
550
+
551
+ with training_args.main_process_first(desc="dataset map tokenization"):
552
+ if not data_args.streaming:
553
+ tokenized_datasets = raw_datasets_preprocessed.map(
554
+ tokenize_function,
555
+ batched=True,
556
+ num_proc=data_args.preprocessing_num_workers,
557
+ remove_columns=column_names,
558
+ load_from_cache_file=not data_args.overwrite_cache,
559
+ desc="Running tokenizer on dataset",
560
+ )
561
+ else:
562
+ tokenized_datasets = raw_datasets_preprocessed.map(
563
+ tokenize_function,
564
+ batched=True,
565
+ remove_columns=column_names,
566
+ load_from_cache_file=not data_args.overwrite_cache,
567
+ )
568
+ if hasattr(config, "max_position_embeddings"):
569
+ max_pos_embeddings = config.max_position_embeddings
570
+ else:
571
+ # Define a default value if the attribute is missing in the config.
572
+ max_pos_embeddings = 1024
573
+
574
+ if data_args.block_size is None:
575
+ block_size = tokenizer.model_max_length
576
+ if block_size > max_pos_embeddings:
577
+ logger.warning(
578
+ f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
579
+ f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
580
+ )
581
+ if max_pos_embeddings > 0:
582
+ block_size = min(1024, max_pos_embeddings)
583
+ else:
584
+ block_size = 1024
585
+ else:
586
+ if data_args.block_size > tokenizer.model_max_length:
587
+ logger.warning(
588
+ f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
589
+ f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
590
+ )
591
+ block_size = min(data_args.block_size, tokenizer.model_max_length)
592
+
593
+ # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
594
+ def group_texts(examples):
595
+ # Concatenate all texts.
596
+ concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
597
+ total_length = len(concatenated_examples[list(examples.keys())[0]])
598
+ # We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
599
+ # We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
600
+ total_length = (total_length // block_size) * block_size
601
+ # Split by chunks of max_len.
602
+ result = {
603
+ k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
604
+ for k, t in concatenated_examples.items()
605
+ }
606
+ result["labels"] = result["input_ids"].copy()
607
+ return result
608
+
609
+ # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
610
+ # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
611
+ # to preprocess.
612
+ #
613
+ # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
614
+ # https://huggingface.co/docs/datasets/process#map
615
+
616
+ with training_args.main_process_first(desc="grouping texts together"):
617
+ if not data_args.streaming:
618
+ lm_datasets = tokenized_datasets.map(
619
+ group_texts,
620
+ batched=True,
621
+ num_proc=data_args.preprocessing_num_workers,
622
+ load_from_cache_file=not data_args.overwrite_cache,
623
+ desc=f"Grouping texts in chunks of {block_size}",
624
+ )
625
+ else:
626
+ lm_datasets = tokenized_datasets.map(
627
+ group_texts,
628
+ batched=True,
629
+ load_from_cache_file=not data_args.overwrite_cache,
630
+ )
631
+
632
+ if training_args.do_train:
633
+ if "train" not in tokenized_datasets:
634
+ raise ValueError("--do_train requires a train dataset")
635
+ train_dataset = lm_datasets["train"]
636
+ if data_args.max_train_samples is not None:
637
+ max_train_samples = min(len(train_dataset), data_args.max_train_samples)
638
+ train_dataset = train_dataset.select(range(max_train_samples))
639
+
640
+ if training_args.do_eval:
641
+ if "validation" not in tokenized_datasets:
642
+ raise ValueError("--do_eval requires a validation dataset")
643
+ eval_dataset = lm_datasets["validation"]
644
+ if data_args.max_eval_samples is not None:
645
+ max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
646
+ eval_dataset = eval_dataset.select(range(max_eval_samples))
647
+
648
+ def preprocess_logits_for_metrics(logits, labels):
649
+ if isinstance(logits, tuple):
650
+ # Depending on the model and config, logits may contain extra tensors,
651
+ # like past_key_values, but logits always come first
652
+ logits = logits[0]
653
+ return logits.argmax(dim=-1)
654
+
655
+
656
+ def compute_metrics(eval_preds):
657
+ accuracy = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
658
+ perplexity = evaluate.load("perplexity", module_type="metric")
659
+ preds, labels = eval_preds
660
+ # preds have the same shape as the labels, after the argmax(-1) has been calculated
661
+ # by preprocess_logits_for_metrics but we need to shift the labels
662
+ labels = labels[:, 1:].reshape(-1)
663
+ preds = preds[:, :-1].reshape(-1)
664
+ accuracy = accuracy.compute(predictions=preds, references=labels)
665
+ # perplexity = perplexity.compute(predictions=preds, model_id='llama')
666
+ return accuracy
667
+
668
+ # Initialize the optimizer
669
+ optimizer = torch.optim.AdamW(model.parameters(), lr=training_args.learning_rate, weight_decay=training_args.weight_decay)
670
+ # Calculate the number of training steps
671
+ train_steps = (len(train_dataset) // (training_args.per_device_train_batch_size * training_args._n_gpu)) * training_args.num_train_epochs
672
+
673
+ # Initialize the scheduler
674
+ linear_scheduler = transformers.get_linear_schedule_with_warmup(
675
+ optimizer,
676
+ num_warmup_steps=train_steps*training_args.warmup_ratio,
677
+ num_training_steps=train_steps
678
+ )
679
+
680
+ # Initialize our Trainer
681
+ trainer = Trainer(
682
+ model=model,
683
+ args=training_args,
684
+ train_dataset=train_dataset if training_args.do_train else None,
685
+ eval_dataset=eval_dataset if training_args.do_eval else None,
686
+ tokenizer=tokenizer,
687
+ optimizers=(optimizer, linear_scheduler),
688
+ # Data collator will default to DataCollatorWithPadding, so we change it.
689
+ data_collator=default_data_collator,
690
+ compute_metrics=compute_metrics if training_args.do_eval else None,
691
+ preprocess_logits_for_metrics=preprocess_logits_for_metrics
692
+ if training_args.do_eval else None,
693
+ )
694
+
695
+ # Training
696
+ if training_args.do_train:
697
+ checkpoint = None
698
+ if training_args.resume_from_checkpoint is not None:
699
+ checkpoint = training_args.resume_from_checkpoint
700
+ elif last_checkpoint is not None:
701
+ checkpoint = last_checkpoint
702
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
703
+ trainer.save_model() # Saves the tokenizer too for easy upload
704
+
705
+ metrics = train_result.metrics
706
+
707
+ max_train_samples = (
708
+ data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
709
+ )
710
+ metrics["train_samples"] = min(max_train_samples, len(train_dataset))
711
+
712
+ trainer.log_metrics("train", metrics)
713
+ trainer.save_metrics("train", metrics)
714
+ trainer.save_state()
715
+ try:
716
+ torch.save([vars(a) for a in [training_args, data_args, model_args]], os.path.join(training_args.output_dir, "args.bin"))
717
+ except:
718
+ logger.info("Failed to save arguments")
719
+
720
+ # Evaluation
721
+ if training_args.do_eval:
722
+ logger.info("*** Evaluate ***")
723
+
724
+ metrics = trainer.evaluate()
725
+
726
+ max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
727
+ metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
728
+ try:
729
+ perplexity = math.exp(metrics["eval_loss"])
730
+ except OverflowError:
731
+ perplexity = float("inf")
732
+ metrics["perplexity"] = perplexity
733
+
734
+ trainer.log_metrics("eval", metrics)
735
+ trainer.save_metrics("eval", metrics)
736
+
737
+ kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
738
+ if data_args.dataset_name is not None:
739
+ kwargs["dataset_tags"] = data_args.dataset_name
740
+ if data_args.dataset_config_name is not None:
741
+ kwargs["dataset_args"] = data_args.dataset_config_name
742
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
743
+ else:
744
+ kwargs["dataset"] = data_args.dataset_name
745
+ elif data_args.dataset_name_hub is not None:
746
+ kwargs["dataset"] = data_args.dataset_name_hub
747
+
748
+ if training_args.push_to_hub:
749
+ trainer.push_to_hub(**kwargs)
750
+ else:
751
+ trainer.create_model_card(**kwargs)
752
+
753
+ if __name__ == "__main__":
754
+ main()
experiment_code/submit_job.sh ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ #SBATCH -p g24
3
+ #SBATCH --job-name=myjob_shareGPT
4
+ #SBATCH --qos=high
5
+ #SBATCH --nodes=1 # Number of nodes
6
+ #SBATCH --ntasks=1 # Number of tasks (one for each script)
7
+ #SBATCH --cpus-per-task=60
8
+ #SBATCH --gres=gpu:6
9
+ #SBATCH --array=1-1 # Array range
10
+ # #SBATCH --output=./slurm_outputs/run_clm_job_%A_task_%a.out # Standard output
11
+ #SBATCH --output=/dev/null # Discard standard output # Because we write to the log.txt file
12
+
13
+ # # Get the current date and time
14
+ current_time=$(date +"%d-%m_%H-%M")
15
+ OUTPUT_DIR="./training_outputs_job_${SLURM_ARRAY_JOB_ID}_${SLURM_ARRAY_TASK_ID}_${current_time}"
16
+ export DEFAULT_CONFIG_FILE="./config/config1.yaml"
17
+
18
+ while test $# -gt 0; do
19
+ echo $1
20
+ case "$1" in
21
+ --output_dir)
22
+ shift
23
+ OUTPUT_DIR=$1
24
+ shift
25
+ ;;
26
+ esac
27
+ done
28
+
29
+ mkdir_is_exists() {
30
+ if [ -d "$1" ]; then
31
+ echo "Directory '$1' already exists."
32
+ else
33
+ mkdir -p "$1"
34
+ echo "Directory '$1' created."
35
+ fi
36
+ }
37
+
38
+
39
+ mkdir_is_exists $OUTPUT_DIR
40
+ mkdir_is_exists $OUTPUT_DIR/experiment_code
41
+ git log -n 1 > $OUTPUT_DIR/commit.txt
42
+ pip freeze > $OUTPUT_DIR/pip_freeze.txt
43
+ echo $0 $ARGS $current_time > $OUTPUT_DIR/cmd.txt
44
+ cp -r ./run_clm.py $OUTPUT_DIR/experiment_code
45
+ cp -r ./prepare_sharegpt.py $OUTPUT_DIR/experiment_code
46
+ cp -r config $OUTPUT_DIR/experiment_code
47
+ cp -r ./submit_job.sh $OUTPUT_DIR/experiment_code
48
+ cp -r ./requirements.txt $OUTPUT_DIR/experiment_code
49
+
50
+ # Define the Python scripts and their corresponding input files
51
+ declare -A scripts_and_inputs=(
52
+ ["1"]="./config/config1.yaml"
53
+ # ["2"]="./config/config_redpajama.yaml"
54
+ # ["3"]="./config/config1.yaml"
55
+ # ["4"]="./config/config1.yaml"
56
+ # ["5"]="./config/config1.yaml"
57
+ )
58
+
59
+ # Launch each script with its corresponding input file as a separate task
60
+ echo "Starting job array task: $SLURM_ARRAY_TASK_ID"
61
+ PARAMS="--output_dir $OUTPUT_DIR --logging_dir $OUTPUT_DIR --config_file ${scripts_and_inputs[$SLURM_ARRAY_TASK_ID]}"
62
+
63
+ srun --exclusive python run_clm.py $PARAMS 2>&1 | tee $OUTPUT_DIR/log.txt
64
+
65
+
66
+ # Wait for all background jobs to complete
67
+ wait
68
+
69
+ # Print a message indicating completion
70
+ echo "All Python scripts have been executed."
log.txt ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/11346 [00:00<?, ?it/s]/home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
 
 
1
  0%| | 1/11346 [00:04<15:15:06, 4.84s/it]
2
  0%| | 2/11346 [00:05<8:04:02, 2.56s/it]
3
  0%| | 3/11346 [00:06<5:46:22, 1.83s/it]
4
  0%| | 4/11346 [00:07<4:41:45, 1.49s/it]
5
  0%| | 5/11346 [00:08<4:06:03, 1.30s/it]
6
  0%| | 6/11346 [00:09<3:44:22, 1.19s/it]
7
  0%| | 7/11346 [00:10<3:30:41, 1.11s/it]
8
  0%| | 8/11346 [00:11<3:21:54, 1.07s/it]
9
  0%| | 9/11346 [00:12<3:15:57, 1.04s/it]
10
  0%| | 10/11346 [00:13<3:11:49, 1.02s/it]
11
  0%| | 11/11346 [00:14<3:09:05, 1.00s/it]
12
  0%| | 12/11346 [00:15<3:07:02, 1.01it/s]
13
  0%| | 13/11346 [00:16<3:05:37, 1.02it/s]
14
  0%| | 14/11346 [00:17<3:04:44, 1.02it/s]
15
  0%| | 15/11346 [00:18<3:04:01, 1.03it/s]
16
  0%| | 16/11346 [00:19<3:03:31, 1.03it/s]
17
  0%| | 17/11346 [00:20<3:04:21, 1.02it/s]
18
  0%| | 18/11346 [00:21<3:06:59, 1.01it/s]
19
  0%| | 19/11346 [00:22<3:05:57, 1.02it/s]
20
  0%| | 20/11346 [00:23<3:05:22, 1.02it/s]
21
  0%| | 21/11346 [00:24<3:04:28, 1.02it/s]
22
  0%| | 22/11346 [00:25<3:03:54, 1.03it/s]
23
  0%| | 23/11346 [00:26<3:03:38, 1.03it/s]
24
  0%| | 24/11346 [00:27<3:03:17, 1.03it/s]
25
  0%| | 25/11346 [00:28<3:03:02, 1.03it/s]
26
  0%| | 26/11346 [00:29<3:02:51, 1.03it/s]
27
  0%| | 27/11346 [00:30<3:02:38, 1.03it/s]
28
  0%| | 28/11346 [00:31<3:02:32, 1.03it/s]
29
  0%| | 29/11346 [00:32<3:02:30, 1.03it/s]
30
  0%| | 30/11346 [00:32<3:02:27, 1.03it/s]
31
  0%| | 31/11346 [00:33<3:02:27, 1.03it/s]
32
  0%| | 32/11346 [00:34<3:02:28, 1.03it/s]
33
  0%| | 33/11346 [00:35<3:02:33, 1.03it/s]
34
  0%| | 34/11346 [00:36<3:02:39, 1.03it/s]
35
  0%| | 35/11346 [00:37<3:02:48, 1.03it/s]
36
  0%| | 36/11346 [00:38<3:02:46, 1.03it/s]
37
  0%| | 37/11346 [00:39<3:02:52, 1.03it/s]
38
  0%| | 38/11346 [00:40<3:02:45, 1.03it/s]
39
  0%| | 39/11346 [00:41<3:02:40, 1.03it/s]
40
  0%| | 40/11346 [00:42<3:02:37, 1.03it/s]
41
  0%| | 41/11346 [00:43<3:02:27, 1.03it/s]
42
  0%| | 42/11346 [00:44<3:02:25, 1.03it/s]
43
  0%| | 43/11346 [00:45<3:02:24, 1.03it/s]
44
  0%| | 44/11346 [00:46<3:02:22, 1.03it/s]
45
  0%| | 45/11346 [00:47<3:02:21, 1.03it/s]
46
  0%| | 46/11346 [00:48<3:02:27, 1.03it/s]
47
  0%| | 47/11346 [00:49<3:02:26, 1.03it/s]
48
  0%| | 48/11346 [00:50<3:02:23, 1.03it/s]
49
  0%| | 49/11346 [00:51<3:02:30, 1.03it/s]
50
  0%| | 50/11346 [00:52<3:02:36, 1.03it/s]
51
  0%| | 51/11346 [00:53<3:02:38, 1.03it/s]
52
  0%| | 52/11346 [00:54<3:02:47, 1.03it/s]
53
  0%| | 53/11346 [00:55<3:02:52, 1.03it/s]
54
  0%| | 54/11346 [00:56<3:02:47, 1.03it/s]
55
  0%| | 55/11346 [00:57<3:02:48, 1.03it/s]
56
  0%| | 56/11346 [00:58<3:02:50, 1.03it/s]
57
  1%| | 57/11346 [00:59<3:02:51, 1.03it/s]
58
  1%| | 58/11346 [01:00<3:02:49, 1.03it/s]
59
  1%| | 59/11346 [01:01<3:02:35, 1.03it/s]
60
  1%| | 60/11346 [01:02<3:02:36, 1.03it/s]
61
  1%| | 61/11346 [01:03<3:02:29, 1.03it/s]
62
  1%| | 62/11346 [01:04<3:02:34, 1.03it/s]
63
  1%| | 63/11346 [01:04<3:02:34, 1.03it/s]
64
  1%| | 64/11346 [01:05<3:02:36, 1.03it/s]
65
  1%| | 65/11346 [01:06<3:02:35, 1.03it/s]
66
  1%| | 66/11346 [01:07<3:02:31, 1.03it/s]
67
  1%| | 67/11346 [01:08<3:02:33, 1.03it/s]
68
  1%| | 68/11346 [01:09<3:02:32, 1.03it/s]
69
  1%| | 69/11346 [01:10<3:02:34, 1.03it/s]
70
  1%| | 70/11346 [01:11<3:02:37, 1.03it/s]
71
  1%| | 71/11346 [01:12<3:02:31, 1.03it/s]
72
  1%| | 72/11346 [01:13<3:02:35, 1.03it/s]
73
  1%| | 73/11346 [01:14<3:02:39, 1.03it/s]
74
  1%| | 74/11346 [01:15<3:02:39, 1.03it/s]
75
  1%| | 75/11346 [01:16<3:02:28, 1.03it/s]
76
  1%| | 76/11346 [01:17<3:02:26, 1.03it/s]
77
  1%| | 77/11346 [01:18<3:02:26, 1.03it/s]
78
  1%| | 78/11346 [01:19<3:02:28, 1.03it/s]
79
  1%| | 79/11346 [01:20<3:02:26, 1.03it/s]
80
  1%| | 80/11346 [01:21<3:02:30, 1.03it/s]
81
  1%| | 81/11346 [01:22<3:02:28, 1.03it/s]
82
  1%| | 82/11346 [01:23<3:02:30, 1.03it/s]
83
  1%| | 83/11346 [01:24<3:02:24, 1.03it/s]
84
  1%| | 84/11346 [01:25<3:02:28, 1.03it/s]
85
  1%| | 85/11346 [01:26<3:02:25, 1.03it/s]
86
  1%| | 86/11346 [01:27<3:02:27, 1.03it/s]
87
  1%| | 87/11346 [01:28<3:02:31, 1.03it/s]
88
  1%| | 88/11346 [01:29<3:02:34, 1.03it/s]
89
  1%| | 89/11346 [01:30<3:02:35, 1.03it/s]
90
  1%| | 90/11346 [01:31<3:02:33, 1.03it/s]
91
  1%| | 91/11346 [01:32<3:02:30, 1.03it/s]
92
  1%| | 92/11346 [01:33<3:02:28, 1.03it/s]
93
  1%| | 93/11346 [01:34<3:02:18, 1.03it/s]
94
  1%| | 94/11346 [01:35<3:02:18, 1.03it/s]
95
  1%| | 95/11346 [01:36<3:02:19, 1.03it/s]
96
  1%| | 96/11346 [01:37<3:02:13, 1.03it/s]
97
  1%| | 97/11346 [01:38<3:02:16, 1.03it/s]
98
  1%| | 98/11346 [01:38<3:02:10, 1.03it/s]
99
  1%| | 99/11346 [01:39<3:02:15, 1.03it/s]
100
  1%| | 100/11346 [01:40<3:02:17, 1.03it/s]
101
  1%| | 101/11346 [01:41<3:02:09, 1.03it/s]
102
  1%| | 102/11346 [01:42<3:02:11, 1.03it/s]
103
  1%| | 103/11346 [01:43<3:02:13, 1.03it/s]
104
  1%| | 104/11346 [01:44<3:02:14, 1.03it/s]
105
  1%| | 105/11346 [01:45<3:02:17, 1.03it/s]
106
  1%| | 106/11346 [01:46<3:02:24, 1.03it/s]
107
  1%| | 107/11346 [01:47<3:02:23, 1.03it/s]
108
  1%| | 108/11346 [01:48<3:02:19, 1.03it/s]
109
  1%| | 109/11346 [01:49<3:02:12, 1.03it/s]
110
  1%| | 110/11346 [01:50<3:02:17, 1.03it/s]
111
  1%| | 111/11346 [01:51<3:02:21, 1.03it/s]
112
  1%| | 112/11346 [01:52<3:02:20, 1.03it/s]
113
  1%| | 113/11346 [01:53<3:02:08, 1.03it/s]
114
  1%| | 114/11346 [01:54<3:02:11, 1.03it/s]
115
  1%| | 115/11346 [01:55<3:02:06, 1.03it/s]
116
  1%| | 116/11346 [01:56<3:02:02, 1.03it/s]
117
  1%| | 117/11346 [01:57<3:02:01, 1.03it/s]
118
  1%| | 118/11346 [01:58<3:02:04, 1.03it/s]
119
  1%| | 119/11346 [01:59<3:02:06, 1.03it/s]
120
  1%| | 120/11346 [02:00<3:02:03, 1.03it/s]
121
  1%| | 121/11346 [02:01<3:02:03, 1.03it/s]
122
  1%| | 122/11346 [02:02<3:02:00, 1.03it/s]
123
  1%| | 123/11346 [02:03<3:02:07, 1.03it/s]
124
  1%| | 124/11346 [02:04<3:02:06, 1.03it/s]
125
  1%| | 125/11346 [02:05<3:02:04, 1.03it/s]
126
  1%| | 126/11346 [02:06<3:02:01, 1.03it/s]
127
  1%| | 127/11346 [02:07<3:02:09, 1.03it/s]
128
  1%| | 128/11346 [02:08<3:02:00, 1.03it/s]
129
  1%| | 129/11346 [02:09<3:02:01, 1.03it/s]
130
  1%| | 130/11346 [02:10<3:02:00, 1.03it/s]
131
  1%| | 131/11346 [02:11<3:02:05, 1.03it/s]
132
  1%| | 132/11346 [02:12<3:02:04, 1.03it/s]
133
  1%| | 133/11346 [02:13<3:01:55, 1.03it/s]
134
  1%| | 134/11346 [02:14<3:01:57, 1.03it/s]
135
  1%| | 135/11346 [02:15<3:01:53, 1.03it/s]
136
  1%| | 136/11346 [02:15<3:01:44, 1.03it/s]
137
  1%| | 137/11346 [02:16<3:01:44, 1.03it/s]
138
  1%| | 138/11346 [02:17<3:01:41, 1.03it/s]
139
  1%| | 139/11346 [02:18<3:01:44, 1.03it/s]
140
  1%| | 140/11346 [02:19<3:01:46, 1.03it/s]
141
  1%| | 141/11346 [02:20<3:01:46, 1.03it/s]
142
  1%|▏ | 142/11346 [02:21<3:01:48, 1.03it/s]
143
  1%|▏ | 143/11346 [02:22<3:01:39, 1.03it/s]
144
  1%|▏ | 144/11346 [02:23<3:01:43, 1.03it/s]
145
  1%|▏ | 145/11346 [02:24<3:01:43, 1.03it/s]
146
  1%|▏ | 146/11346 [02:25<3:01:37, 1.03it/s]
147
  1%|▏ | 147/11346 [02:26<3:01:42, 1.03it/s]
148
  1%|▏ | 148/11346 [02:27<3:01:44, 1.03it/s]
149
  1%|▏ | 149/11346 [02:28<3:01:44, 1.03it/s]
150
  1%|▏ | 150/11346 [02:29<3:01:47, 1.03it/s]
151
  1%|▏ | 151/11346 [02:30<3:01:43, 1.03it/s]
152
  1%|▏ | 152/11346 [02:31<3:01:43, 1.03it/s]
153
  1%|▏ | 153/11346 [02:32<3:01:37, 1.03it/s]
154
  1%|▏ | 154/11346 [02:33<3:01:38, 1.03it/s]
155
  1%|▏ | 155/11346 [02:34<3:01:32, 1.03it/s]
156
  1%|▏ | 156/11346 [02:35<3:01:33, 1.03it/s]
157
  1%|▏ | 157/11346 [02:36<3:01:29, 1.03it/s]
158
  1%|▏ | 158/11346 [02:37<3:01:24, 1.03it/s]
159
  1%|▏ | 159/11346 [02:38<3:01:23, 1.03it/s]
160
  1%|▏ | 160/11346 [02:39<3:01:30, 1.03it/s]
161
  1%|▏ | 161/11346 [02:40<3:01:33, 1.03it/s]
162
  1%|▏ | 162/11346 [02:41<3:01:28, 1.03it/s]
163
  1%|▏ | 163/11346 [02:42<3:01:27, 1.03it/s]
164
  1%|▏ | 164/11346 [02:43<3:01:27, 1.03it/s]
165
  1%|▏ | 165/11346 [02:44<3:01:27, 1.03it/s]
166
  1%|▏ | 166/11346 [02:45<3:01:20, 1.03it/s]
167
  1%|▏ | 167/11346 [02:46<3:01:20, 1.03it/s]
168
  1%|▏ | 168/11346 [02:47<3:01:15, 1.03it/s]
169
  1%|▏ | 169/11346 [02:48<3:01:17, 1.03it/s]
170
  1%|▏ | 170/11346 [02:49<3:01:17, 1.03it/s]
171
  2%|▏ | 171/11346 [02:50<3:01:21, 1.03it/s]
172
  2%|▏ | 172/11346 [02:51<3:01:16, 1.03it/s]
173
  2%|▏ | 173/11346 [02:52<3:01:20, 1.03it/s]
174
  2%|▏ | 174/11346 [02:52<3:01:22, 1.03it/s]
175
  2%|▏ | 175/11346 [02:53<3:01:23, 1.03it/s]
176
  2%|▏ | 176/11346 [02:54<3:01:27, 1.03it/s]
177
  2%|▏ | 177/11346 [02:55<3:01:28, 1.03it/s]
178
  2%|▏ | 178/11346 [02:56<3:01:20, 1.03it/s]
179
  2%|▏ | 179/11346 [02:57<3:01:14, 1.03it/s]
180
  2%|▏ | 180/11346 [02:58<3:01:12, 1.03it/s]
181
  2%|▏ | 181/11346 [02:59<3:01:27, 1.03it/s]
182
  2%|▏ | 182/11346 [03:00<3:01:28, 1.03it/s]
183
  2%|▏ | 183/11346 [03:01<3:01:20, 1.03it/s]
184
  2%|▏ | 184/11346 [03:02<3:01:20, 1.03it/s]
185
  2%|▏ | 185/11346 [03:03<3:01:08, 1.03it/s]
186
  2%|▏ | 186/11346 [03:04<3:01:13, 1.03it/s]
187
  2%|▏ | 187/11346 [03:05<3:01:19, 1.03it/s]
188
  2%|▏ | 188/11346 [03:06<3:01:16, 1.03it/s]
189
  2%|▏ | 189/11346 [03:07<3:01:13, 1.03it/s]
190
  2%|▏ | 190/11346 [03:08<3:01:09, 1.03it/s]
191
  2%|▏ | 191/11346 [03:09<3:01:10, 1.03it/s]
192
  2%|▏ | 192/11346 [03:10<3:01:10, 1.03it/s]
193
  2%|▏ | 193/11346 [03:11<3:01:02, 1.03it/s]
194
  2%|▏ | 194/11346 [03:12<3:01:06, 1.03it/s]
195
  2%|▏ | 195/11346 [03:13<3:01:03, 1.03it/s]
196
  2%|▏ | 196/11346 [03:14<3:01:09, 1.03it/s]
197
  2%|▏ | 197/11346 [03:15<3:01:08, 1.03it/s]
198
  2%|▏ | 198/11346 [03:16<3:01:05, 1.03it/s]
199
  2%|▏ | 199/11346 [03:17<3:01:02, 1.03it/s]
200
  2%|▏ | 200/11346 [03:18<3:00:55, 1.03it/s]
201
  2%|▏ | 201/11346 [03:19<3:00:59, 1.03it/s]
202
  2%|▏ | 202/11346 [03:20<3:01:04, 1.03it/s]
203
  2%|▏ | 203/11346 [03:21<3:01:01, 1.03it/s]
204
  2%|▏ | 204/11346 [03:22<3:01:02, 1.03it/s]
205
  2%|▏ | 205/11346 [03:23<3:00:57, 1.03it/s]
206
  2%|▏ | 206/11346 [03:24<3:00:55, 1.03it/s]
207
  2%|▏ | 207/11346 [03:25<3:00:55, 1.03it/s]
208
  2%|▏ | 208/11346 [03:26<3:00:50, 1.03it/s]
209
  2%|▏ | 209/11346 [03:27<3:00:50, 1.03it/s]
210
  2%|▏ | 210/11346 [03:28<3:00:49, 1.03it/s]
211
  2%|▏ | 211/11346 [03:29<3:00:48, 1.03it/s]
212
  2%|▏ | 212/11346 [03:30<3:00:46, 1.03it/s]
213
  2%|▏ | 213/11346 [03:30<3:00:49, 1.03it/s]
214
  2%|▏ | 214/11346 [03:31<3:00:51, 1.03it/s]
215
  2%|▏ | 215/11346 [03:32<3:00:50, 1.03it/s]
216
  2%|▏ | 216/11346 [03:33<3:00:49, 1.03it/s]
217
  2%|▏ | 217/11346 [03:34<3:00:41, 1.03it/s]
218
  2%|▏ | 218/11346 [03:35<3:00:43, 1.03it/s]
219
  2%|▏ | 219/11346 [03:36<3:00:43, 1.03it/s]
220
  2%|▏ | 220/11346 [03:37<3:00:45, 1.03it/s]
221
  2%|▏ | 221/11346 [03:38<3:00:43, 1.03it/s]
222
  2%|▏ | 222/11346 [03:39<3:00:34, 1.03it/s]
223
  2%|▏ | 223/11346 [03:40<3:00:36, 1.03it/s]
224
  2%|▏ | 224/11346 [03:41<3:00:39, 1.03it/s]
225
  2%|▏ | 225/11346 [03:42<3:00:41, 1.03it/s]
226
  2%|▏ | 226/11346 [03:43<3:00:35, 1.03it/s]
227
  2%|▏ | 227/11346 [03:44<3:00:33, 1.03it/s]
228
  2%|▏ | 228/11346 [03:45<3:00:32, 1.03it/s]
229
  2%|▏ | 229/11346 [03:46<3:00:33, 1.03it/s]
230
  2%|▏ | 230/11346 [03:47<3:00:32, 1.03it/s]
231
  2%|▏ | 231/11346 [03:48<3:00:35, 1.03it/s]
232
  2%|▏ | 232/11346 [03:49<3:00:36, 1.03it/s]
233
  2%|▏ | 233/11346 [03:50<3:00:32, 1.03it/s]
234
  2%|▏ | 234/11346 [03:51<3:00:35, 1.03it/s]
235
  2%|▏ | 235/11346 [03:52<3:00:35, 1.03it/s]
236
  2%|▏ | 236/11346 [03:53<3:00:35, 1.03it/s]
237
  2%|▏ | 237/11346 [03:54<3:00:34, 1.03it/s]
238
  2%|▏ | 238/11346 [03:55<3:00:38, 1.02it/s]
239
  2%|▏ | 239/11346 [03:56<3:00:34, 1.03it/s]
240
  2%|▏ | 240/11346 [03:57<3:00:31, 1.03it/s]
241
  2%|▏ | 241/11346 [03:58<3:00:30, 1.03it/s]
242
  2%|▏ | 242/11346 [03:59<3:00:23, 1.03it/s]
243
  2%|▏ | 243/11346 [04:00<3:00:22, 1.03it/s]
244
  2%|▏ | 244/11346 [04:01<3:00:22, 1.03it/s]
245
  2%|▏ | 245/11346 [04:02<3:00:21, 1.03it/s]
246
  2%|▏ | 246/11346 [04:03<3:00:11, 1.03it/s]
247
  2%|▏ | 247/11346 [04:04<3:00:14, 1.03it/s]
248
  2%|▏ | 248/11346 [04:05<3:00:16, 1.03it/s]
249
  2%|▏ | 249/11346 [04:06<3:00:15, 1.03it/s]
250
  2%|▏ | 250/11346 [04:07<3:00:15, 1.03it/s]
251
  2%|▏ | 251/11346 [04:08<3:00:12, 1.03it/s]
252
  2%|▏ | 252/11346 [04:08<3:00:11, 1.03it/s]
253
  2%|▏ | 253/11346 [04:09<3:00:11, 1.03it/s]
254
  2%|▏ | 254/11346 [04:10<3:00:13, 1.03it/s]
255
  2%|▏ | 255/11346 [04:11<3:00:12, 1.03it/s]
256
  2%|▏ | 256/11346 [04:12<3:00:13, 1.03it/s]
257
  2%|▏ | 257/11346 [04:13<3:00:06, 1.03it/s]
258
  2%|▏ | 258/11346 [04:14<3:00:05, 1.03it/s]
259
  2%|▏ | 259/11346 [04:15<3:00:08, 1.03it/s]
260
  2%|▏ | 260/11346 [04:16<3:00:08, 1.03it/s]
261
  2%|▏ | 261/11346 [04:17<3:00:05, 1.03it/s]
262
  2%|▏ | 262/11346 [04:18<3:00:01, 1.03it/s]
263
  2%|▏ | 263/11346 [04:19<3:00:04, 1.03it/s]
264
  2%|▏ | 264/11346 [04:20<3:00:04, 1.03it/s]
265
  2%|▏ | 265/11346 [04:21<3:00:02, 1.03it/s]
266
  2%|▏ | 266/11346 [04:22<3:00:05, 1.03it/s]
267
  2%|▏ | 267/11346 [04:23<3:00:03, 1.03it/s]
268
  2%|▏ | 268/11346 [04:24<2:59:55, 1.03it/s]
269
  2%|▏ | 269/11346 [04:25<2:59:51, 1.03it/s]
270
  2%|▏ | 270/11346 [04:26<2:59:51, 1.03it/s]
271
  2%|▏ | 271/11346 [04:27<2:59:44, 1.03it/s]
272
  2%|▏ | 272/11346 [04:28<2:59:48, 1.03it/s]
273
  2%|▏ | 273/11346 [04:29<2:59:59, 1.03it/s]
274
  2%|▏ | 274/11346 [04:30<3:00:03, 1.02it/s]
275
  2%|▏ | 275/11346 [04:31<2:59:58, 1.03it/s]
276
  2%|▏ | 276/11346 [04:32<3:00:01, 1.02it/s]
277
  2%|▏ | 277/11346 [04:33<3:00:00, 1.02it/s]
278
  2%|▏ | 278/11346 [04:34<2:59:52, 1.03it/s]
279
  2%|▏ | 279/11346 [04:35<2:59:53, 1.03it/s]
280
  2%|▏ | 280/11346 [04:36<2:59:54, 1.03it/s]
281
  2%|▏ | 281/11346 [04:37<2:59:49, 1.03it/s]
282
  2%|▏ | 282/11346 [04:38<2:59:50, 1.03it/s]
283
  2%|▏ | 283/11346 [04:39<2:59:49, 1.03it/s]
284
  3%|▎ | 284/11346 [04:40<2:59:42, 1.03it/s]
285
  3%|▎ | 285/11346 [04:41<2:59:45, 1.03it/s]
286
  3%|▎ | 286/11346 [04:42<2:59:45, 1.03it/s]
287
  3%|▎ | 287/11346 [04:43<2:59:46, 1.03it/s]
288
  3%|▎ | 288/11346 [04:44<2:59:38, 1.03it/s]
289
  3%|▎ | 289/11346 [04:45<2:59:34, 1.03it/s]
290
  3%|▎ | 290/11346 [04:46<2:59:25, 1.03it/s]
291
  3%|▎ | 291/11346 [04:47<2:59:28, 1.03it/s]
292
  3%|▎ | 292/11346 [04:47<2:59:31, 1.03it/s]
293
  3%|▎ | 293/11346 [04:48<2:59:32, 1.03it/s]
294
  3%|▎ | 294/11346 [04:49<2:59:30, 1.03it/s]
295
  3%|▎ | 295/11346 [04:50<2:59:31, 1.03it/s]
296
  3%|▎ | 296/11346 [04:51<2:59:32, 1.03it/s]
297
  3%|▎ | 297/11346 [04:52<2:59:27, 1.03it/s]
298
  3%|▎ | 298/11346 [04:53<2:59:26, 1.03it/s]
299
  3%|▎ | 299/11346 [04:54<2:59:23, 1.03it/s]
300
  3%|▎ | 300/11346 [04:55<2:59:19, 1.03it/s]
301
  3%|▎ | 301/11346 [04:56<2:59:21, 1.03it/s]
302
  3%|▎ | 302/11346 [04:57<2:59:26, 1.03it/s]
303
  3%|▎ | 303/11346 [04:58<2:59:25, 1.03it/s]
304
  3%|▎ | 304/11346 [04:59<2:59:23, 1.03it/s]
305
  3%|▎ | 305/11346 [05:00<2:59:26, 1.03it/s]
306
  3%|▎ | 306/11346 [05:01<2:59:22, 1.03it/s]
307
  3%|▎ | 307/11346 [05:02<2:59:30, 1.02it/s]
308
  3%|▎ | 308/11346 [05:03<2:59:20, 1.03it/s]
309
  3%|▎ | 309/11346 [05:04<2:59:21, 1.03it/s]
310
  3%|▎ | 310/11346 [05:05<2:59:16, 1.03it/s]
311
  3%|▎ | 311/11346 [05:06<2:59:15, 1.03it/s]
312
  3%|▎ | 312/11346 [05:07<2:59:11, 1.03it/s]
313
  3%|▎ | 313/11346 [05:08<2:59:02, 1.03it/s]
314
  3%|▎ | 314/11346 [05:09<2:59:00, 1.03it/s]
315
  3%|▎ | 315/11346 [05:10<2:59:03, 1.03it/s]
316
  3%|▎ | 316/11346 [05:11<2:59:04, 1.03it/s]
317
  3%|▎ | 317/11346 [05:12<2:59:08, 1.03it/s]
318
  3%|▎ | 318/11346 [05:13<2:59:07, 1.03it/s]
319
  3%|▎ | 319/11346 [05:14<2:59:05, 1.03it/s]
320
  3%|▎ | 320/11346 [05:15<2:59:01, 1.03it/s]
321
  3%|▎ | 321/11346 [05:16<2:59:02, 1.03it/s]
322
  3%|▎ | 322/11346 [05:17<2:59:08, 1.03it/s]
323
  3%|▎ | 323/11346 [05:18<2:59:03, 1.03it/s]
324
  3%|▎ | 324/11346 [05:19<2:58:55, 1.03it/s]
325
  3%|▎ | 325/11346 [05:20<2:59:00, 1.03it/s]
326
  3%|▎ | 326/11346 [05:21<2:58:53, 1.03it/s]
327
  3%|▎ | 327/11346 [05:22<2:58:46, 1.03it/s]
328
  3%|▎ | 328/11346 [05:23<2:58:50, 1.03it/s]
329
  3%|▎ | 329/11346 [05:24<2:58:42, 1.03it/s]
330
  3%|▎ | 330/11346 [05:25<2:58:39, 1.03it/s]
331
  3%|▎ | 331/11346 [05:25<2:58:42, 1.03it/s]
332
  3%|▎ | 332/11346 [05:26<2:58:47, 1.03it/s]
333
  3%|▎ | 333/11346 [05:27<2:58:45, 1.03it/s]
334
  3%|▎ | 334/11346 [05:28<2:58:46, 1.03it/s]
335
  3%|▎ | 335/11346 [05:29<2:58:40, 1.03it/s]
336
  3%|▎ | 336/11346 [05:30<2:58:34, 1.03it/s]
337
  3%|▎ | 337/11346 [05:31<2:58:29, 1.03it/s]
338
  3%|▎ | 338/11346 [05:32<2:58:31, 1.03it/s]
339
  3%|▎ | 339/11346 [05:33<2:58:38, 1.03it/s]
340
  3%|▎ | 340/11346 [05:34<2:58:38, 1.03it/s]
341
  3%|▎ | 341/11346 [05:35<2:58:41, 1.03it/s]
342
  3%|▎ | 342/11346 [05:36<2:58:42, 1.03it/s]
343
  3%|▎ | 343/11346 [05:37<2:58:40, 1.03it/s]
344
  3%|▎ | 344/11346 [05:38<2:58:33, 1.03it/s]
345
  3%|▎ | 345/11346 [05:39<2:58:34, 1.03it/s]
346
  3%|▎ | 346/11346 [05:40<2:58:37, 1.03it/s]
347
  3%|▎ | 347/11346 [05:41<2:58:31, 1.03it/s]
348
  3%|▎ | 348/11346 [05:42<2:58:31, 1.03it/s]
349
  3%|▎ | 349/11346 [05:43<2:58:30, 1.03it/s]
350
  3%|▎ | 350/11346 [05:44<2:58:27, 1.03it/s]
351
  3%|▎ | 351/11346 [05:45<2:58:22, 1.03it/s]
352
  3%|▎ | 352/11346 [05:46<2:58:23, 1.03it/s]
353
  3%|▎ | 353/11346 [05:47<2:58:23, 1.03it/s]
354
  3%|▎ | 354/11346 [05:48<2:58:23, 1.03it/s]
355
  3%|▎ | 355/11346 [05:49<2:58:22, 1.03it/s]
356
  3%|▎ | 356/11346 [05:50<2:58:22, 1.03it/s]
357
  3%|▎ | 357/11346 [05:51<2:58:23, 1.03it/s]
358
  3%|▎ | 358/11346 [05:52<2:58:22, 1.03it/s]
359
  3%|▎ | 359/11346 [05:53<2:58:24, 1.03it/s]
360
  3%|▎ | 360/11346 [05:54<2:58:23, 1.03it/s]
361
  3%|▎ | 361/11346 [05:55<2:58:18, 1.03it/s]
362
  3%|▎ | 362/11346 [05:56<2:58:22, 1.03it/s]
363
  3%|▎ | 363/11346 [05:57<2:58:12, 1.03it/s]
364
  3%|▎ | 364/11346 [05:58<2:58:13, 1.03it/s]
365
  3%|▎ | 365/11346 [05:59<2:58:18, 1.03it/s]
366
  3%|▎ | 366/11346 [06:00<2:58:18, 1.03it/s]
367
  3%|▎ | 367/11346 [06:01<2:58:12, 1.03it/s]
368
  3%|▎ | 368/11346 [06:02<2:58:16, 1.03it/s]
369
  3%|▎ | 369/11346 [06:03<2:58:15, 1.03it/s]
370
  3%|▎ | 370/11346 [06:03<2:58:11, 1.03it/s]
371
  3%|▎ | 371/11346 [06:04<2:58:12, 1.03it/s]
372
  3%|▎ | 372/11346 [06:05<2:58:20, 1.03it/s]
373
  3%|▎ | 373/11346 [06:06<2:58:15, 1.03it/s]
374
  3%|▎ | 374/11346 [06:07<2:58:06, 1.03it/s]
375
  3%|▎ | 375/11346 [06:08<2:58:09, 1.03it/s]
376
  3%|▎ | 376/11346 [06:09<2:58:10, 1.03it/s]
377
  3%|▎ | 377/11346 [06:10<2:58:08, 1.03it/s]
378
  3%|▎ | 378/11346 [06:11<2:57:58, 1.03it/s]
379
  3%|▎ | 379/11346 [06:12<2:58:02, 1.03it/s]
380
  3%|▎ | 380/11346 [06:13<2:58:02, 1.03it/s]
381
  3%|▎ | 381/11346 [06:14<2:57:59, 1.03it/s]
382
  3%|▎ | 382/11346 [06:15<2:57:58, 1.03it/s]
383
  3%|▎ | 383/11346 [06:16<2:57:57, 1.03it/s]
384
  3%|▎ | 384/11346 [06:17<2:57:59, 1.03it/s]
385
  3%|▎ | 385/11346 [06:18<2:57:55, 1.03it/s]
386
  3%|▎ | 386/11346 [06:19<2:57:57, 1.03it/s]
387
  3%|▎ | 387/11346 [06:20<2:57:56, 1.03it/s]
388
  3%|▎ | 388/11346 [06:21<2:57:53, 1.03it/s]
389
  3%|▎ | 389/11346 [06:22<2:57:54, 1.03it/s]
390
  3%|▎ | 390/11346 [06:23<2:57:56, 1.03it/s]
391
  3%|▎ | 391/11346 [06:24<2:57:50, 1.03it/s]
392
  3%|▎ | 392/11346 [06:25<2:57:51, 1.03it/s]
393
  3%|▎ | 393/11346 [06:26<2:57:45, 1.03it/s]
394
  3%|▎ | 394/11346 [06:27<2:57:41, 1.03it/s]
395
  3%|▎ | 395/11346 [06:28<2:57:39, 1.03it/s]
396
  3%|▎ | 396/11346 [06:29<2:57:34, 1.03it/s]
397
  3%|▎ | 397/11346 [06:30<2:57:32, 1.03it/s]
398
  4%|▎ | 398/11346 [06:31<2:57:25, 1.03it/s]
399
  4%|▎ | 399/11346 [06:32<2:57:23, 1.03it/s]
400
  4%|▎ | 400/11346 [06:33<2:57:23, 1.03it/s]
401
  4%|▎ | 401/11346 [06:34<2:57:26, 1.03it/s]
402
  4%|▎ | 402/11346 [06:35<2:57:28, 1.03it/s]
403
  4%|▎ | 403/11346 [06:36<2:57:24, 1.03it/s]
404
  4%|▎ | 404/11346 [06:37<2:57:26, 1.03it/s]
405
  4%|▎ | 405/11346 [06:38<2:57:22, 1.03it/s]
406
  4%|▎ | 406/11346 [06:39<2:57:16, 1.03it/s]
407
  4%|▎ | 407/11346 [06:39<2:57:09, 1.03it/s]
408
  4%|▎ | 408/11346 [06:40<2:57:09, 1.03it/s]
409
  4%|▎ | 409/11346 [06:41<2:57:08, 1.03it/s]
410
  4%|▎ | 410/11346 [06:42<2:57:07, 1.03it/s]
411
  4%|▎ | 411/11346 [06:43<2:57:03, 1.03it/s]
412
  4%|▎ | 412/11346 [06:44<2:57:04, 1.03it/s]
413
  4%|▎ | 413/11346 [06:45<2:57:00, 1.03it/s]
414
  4%|▎ | 414/11346 [06:46<2:56:59, 1.03it/s]
415
  4%|▎ | 415/11346 [06:47<2:57:02, 1.03it/s]
416
  4%|▎ | 416/11346 [06:48<2:57:00, 1.03it/s]
417
  4%|▎ | 417/11346 [06:49<2:57:00, 1.03it/s]
418
  4%|▎ | 418/11346 [06:50<2:57:03, 1.03it/s]
419
  4%|▎ | 419/11346 [06:51<2:57:04, 1.03it/s]
420
  4%|▎ | 420/11346 [06:52<2:57:04, 1.03it/s]
421
  4%|▎ | 421/11346 [06:53<2:57:10, 1.03it/s]
422
  4%|▎ | 422/11346 [06:54<2:57:09, 1.03it/s]
423
  4%|▎ | 423/11346 [06:55<2:57:04, 1.03it/s]
424
  4%|▎ | 424/11346 [06:56<2:57:00, 1.03it/s]
425
  4%|▎ | 425/11346 [06:57<2:56:57, 1.03it/s]
426
  4%|▍ | 426/11346 [06:58<2:56:58, 1.03it/s]
427
  4%|▍ | 427/11346 [06:59<2:56:54, 1.03it/s]
428
  4%|▍ | 428/11346 [07:00<2:56:55, 1.03it/s]
429
  4%|▍ | 429/11346 [07:01<2:56:55, 1.03it/s]
430
  4%|▍ | 430/11346 [07:02<2:56:53, 1.03it/s]
431
  4%|▍ | 431/11346 [07:03<2:56:50, 1.03it/s]
432
  4%|▍ | 432/11346 [07:04<2:56:46, 1.03it/s]
433
  4%|▍ | 433/11346 [07:05<2:56:43, 1.03it/s]
434
  4%|▍ | 434/11346 [07:06<2:56:44, 1.03it/s]
435
  4%|▍ | 435/11346 [07:07<2:56:51, 1.03it/s]
436
  4%|▍ | 436/11346 [07:08<2:56:47, 1.03it/s]
437
  4%|▍ | 437/11346 [07:09<2:56:43, 1.03it/s]
438
  4%|▍ | 438/11346 [07:10<2:56:53, 1.03it/s]
439
  4%|▍ | 439/11346 [07:11<2:56:45, 1.03it/s]
440
  4%|▍ | 440/11346 [07:12<2:56:42, 1.03it/s]
441
  4%|▍ | 441/11346 [07:13<2:56:45, 1.03it/s]
442
  4%|▍ | 442/11346 [07:14<2:56:42, 1.03it/s]
443
  4%|▍ | 443/11346 [07:14<2:56:39, 1.03it/s]
444
  4%|▍ | 444/11346 [07:15<2:56:37, 1.03it/s]
445
  4%|▍ | 445/11346 [07:16<2:56:38, 1.03it/s]
446
  4%|▍ | 446/11346 [07:17<2:56:35, 1.03it/s]
447
  4%|▍ | 447/11346 [07:18<2:56:38, 1.03it/s]
448
  4%|▍ | 448/11346 [07:19<2:56:38, 1.03it/s]
449
  4%|▍ | 449/11346 [07:20<2:56:34, 1.03it/s]
450
  4%|▍ | 450/11346 [07:21<2:56:31, 1.03it/s]
451
  4%|▍ | 451/11346 [07:22<2:56:32, 1.03it/s]
452
  4%|▍ | 452/11346 [07:23<2:56:31, 1.03it/s]
453
  4%|▍ | 453/11346 [07:24<2:56:29, 1.03it/s]
454
  4%|▍ | 454/11346 [07:25<2:56:29, 1.03it/s]
455
  4%|▍ | 455/11346 [07:26<2:56:25, 1.03it/s]
456
  4%|▍ | 456/11346 [07:27<2:56:25, 1.03it/s]
457
  4%|▍ | 457/11346 [07:28<2:56:24, 1.03it/s]
458
  4%|▍ | 458/11346 [07:29<2:56:23, 1.03it/s]
459
  4%|▍ | 459/11346 [07:30<2:56:22, 1.03it/s]
460
  4%|▍ | 460/11346 [07:31<2:56:22, 1.03it/s]
461
  4%|▍ | 461/11346 [07:32<2:56:19, 1.03it/s]
462
  4%|▍ | 462/11346 [07:33<2:56:19, 1.03it/s]
463
  4%|▍ | 463/11346 [07:34<2:56:20, 1.03it/s]
464
  4%|▍ | 464/11346 [07:35<2:56:20, 1.03it/s]
465
  4%|▍ | 465/11346 [07:36<2:56:21, 1.03it/s]
466
  4%|▍ | 466/11346 [07:37<2:56:16, 1.03it/s]
467
  4%|▍ | 467/11346 [07:38<2:56:10, 1.03it/s]
468
  4%|▍ | 468/11346 [07:39<2:56:11, 1.03it/s]
469
  4%|▍ | 469/11346 [07:40<2:56:07, 1.03it/s]
470
  4%|▍ | 470/11346 [07:41<2:56:09, 1.03it/s]
471
  4%|▍ | 471/11346 [07:42<2:56:10, 1.03it/s]
472
  4%|▍ | 472/11346 [07:43<2:56:12, 1.03it/s]
473
  4%|▍ | 473/11346 [07:44<2:56:18, 1.03it/s]
474
  4%|▍ | 474/11346 [07:45<2:56:16, 1.03it/s]
475
  4%|▍ | 475/11346 [07:46<2:56:08, 1.03it/s]
476
  4%|▍ | 476/11346 [07:47<2:56:06, 1.03it/s]
477
  4%|▍ | 477/11346 [07:48<2:56:05, 1.03it/s]
478
  4%|▍ | 478/11346 [07:49<2:56:03, 1.03it/s]
479
  4%|▍ | 479/11346 [07:49<2:55:59, 1.03it/s]
480
  4%|▍ | 480/11346 [07:50<2:56:00, 1.03it/s]
481
  4%|▍ | 481/11346 [07:51<2:55:59, 1.03it/s]
482
  4%|▍ | 482/11346 [07:52<2:55:57, 1.03it/s]
483
  4%|▍ | 483/11346 [07:53<2:55:58, 1.03it/s]
484
  4%|▍ | 484/11346 [07:54<2:55:55, 1.03it/s]
485
  4%|▍ | 485/11346 [07:55<2:55:58, 1.03it/s]
486
  4%|▍ | 486/11346 [07:56<2:55:56, 1.03it/s]
487
  4%|▍ | 487/11346 [07:57<2:55:50, 1.03it/s]
488
  4%|▍ | 488/11346 [07:58<2:55:48, 1.03it/s]
489
  4%|▍ | 489/11346 [07:59<2:55:47, 1.03it/s]
490
  4%|▍ | 490/11346 [08:00<2:55:48, 1.03it/s]
491
  4%|▍ | 491/11346 [08:01<2:55:51, 1.03it/s]
492
  4%|▍ | 492/11346 [08:02<2:55:51, 1.03it/s]
493
  4%|▍ | 493/11346 [08:03<2:55:48, 1.03it/s]
494
  4%|▍ | 494/11346 [08:04<2:55:50, 1.03it/s]
495
  4%|▍ | 495/11346 [08:05<2:55:51, 1.03it/s]
496
  4%|▍ | 496/11346 [08:06<2:55:49, 1.03it/s]
497
  4%|▍ | 497/11346 [08:07<2:55:49, 1.03it/s]
498
  4%|▍ | 498/11346 [08:08<2:55:44, 1.03it/s]
499
  4%|▍ | 499/11346 [08:09<2:55:43, 1.03it/s]
500
  4%|▍ | 500/11346 [08:10<2:55:42, 1.03it/s]
501
 
502
  4%|▍ | 500/11346 [08:10<2:55:42, 1.03it/s]
503
  4%|▍ | 501/11346 [08:11<2:55:54, 1.03it/s]
504
  4%|▍ | 502/11346 [08:12<2:55:53, 1.03it/s]
505
  4%|▍ | 503/11346 [08:13<2:55:51, 1.03it/s]
506
  4%|▍ | 504/11346 [08:14<2:55:43, 1.03it/s]
507
  4%|▍ | 505/11346 [08:15<2:55:43, 1.03it/s]
508
  4%|▍ | 506/11346 [08:16<2:55:40, 1.03it/s]
509
  4%|▍ | 507/11346 [08:17<2:55:35, 1.03it/s]
510
  4%|▍ | 508/11346 [08:18<2:55:34, 1.03it/s]
511
  4%|▍ | 509/11346 [08:19<2:55:35, 1.03it/s]
512
  4%|▍ | 510/11346 [08:20<2:55:32, 1.03it/s]
513
  5%|▍ | 511/11346 [08:21<2:55:29, 1.03it/s]
514
  5%|▍ | 512/11346 [08:22<2:55:32, 1.03it/s]
515
  5%|▍ | 513/11346 [08:23<2:55:28, 1.03it/s]
516
  5%|▍ | 514/11346 [08:24<2:55:27, 1.03it/s]
517
  5%|▍ | 515/11346 [08:24<2:55:28, 1.03it/s]
518
  5%|▍ | 516/11346 [08:25<2:55:36, 1.03it/s]
519
  5%|▍ | 517/11346 [08:26<2:55:34, 1.03it/s]
520
  5%|▍ | 518/11346 [08:27<2:55:29, 1.03it/s]
521
  5%|▍ | 519/11346 [08:28<2:55:30, 1.03it/s]
522
  5%|▍ | 520/11346 [08:29<2:55:30, 1.03it/s]
523
  5%|▍ | 521/11346 [08:30<2:55:31, 1.03it/s]
524
  5%|▍ | 522/11346 [08:31<2:55:30, 1.03it/s]
525
  5%|▍ | 523/11346 [08:32<2:55:32, 1.03it/s]
526
  5%|▍ | 524/11346 [08:33<2:55:27, 1.03it/s]
527
  5%|▍ | 525/11346 [08:34<2:55:25, 1.03it/s]
528
  5%|▍ | 526/11346 [08:35<2:55:29, 1.03it/s]
529
  5%|▍ | 527/11346 [08:36<2:55:25, 1.03it/s]
530
  5%|▍ | 528/11346 [08:37<2:55:19, 1.03it/s]
531
  5%|▍ | 529/11346 [08:38<2:55:22, 1.03it/s]
532
  5%|▍ | 530/11346 [08:39<2:55:23, 1.03it/s]
533
  5%|▍ | 531/11346 [08:40<2:55:20, 1.03it/s]
534
  5%|▍ | 532/11346 [08:41<2:55:13, 1.03it/s]
535
  5%|▍ | 533/11346 [08:42<2:55:13, 1.03it/s]
536
  5%|▍ | 534/11346 [08:43<2:55:10, 1.03it/s]
537
  5%|▍ | 535/11346 [08:44<2:55:10, 1.03it/s]
538
  5%|▍ | 536/11346 [08:45<2:55:09, 1.03it/s]
539
  5%|▍ | 537/11346 [08:46<2:55:11, 1.03it/s]
540
  5%|▍ | 538/11346 [08:47<2:55:07, 1.03it/s]
541
  5%|▍ | 539/11346 [08:48<2:55:08, 1.03it/s]
542
  5%|▍ | 540/11346 [08:49<2:55:08, 1.03it/s]
543
  5%|▍ | 541/11346 [08:50<2:55:11, 1.03it/s]
544
  5%|▍ | 542/11346 [08:51<2:55:07, 1.03it/s]
545
  5%|▍ | 543/11346 [08:52<2:55:04, 1.03it/s]
546
  5%|▍ | 544/11346 [08:53<2:55:06, 1.03it/s]
547
  5%|▍ | 545/11346 [08:54<2:55:03, 1.03it/s]
548
  5%|▍ | 546/11346 [08:55<2:55:00, 1.03it/s]
549
  5%|▍ | 547/11346 [08:56<2:54:58, 1.03it/s]
550
  5%|▍ | 548/11346 [08:57<2:54:57, 1.03it/s]
551
  5%|▍ | 549/11346 [08:58<2:54:57, 1.03it/s]
552
  5%|▍ | 550/11346 [08:59<2:54:58, 1.03it/s]
553
  5%|▍ | 551/11346 [08:59<2:54:53, 1.03it/s]
554
  5%|▍ | 552/11346 [09:00<2:54:50, 1.03it/s]
555
  5%|▍ | 553/11346 [09:01<2:54:48, 1.03it/s]
556
  5%|▍ | 554/11346 [09:02<2:54:51, 1.03it/s]
557
  5%|▍ | 555/11346 [09:03<2:54:53, 1.03it/s]
558
  5%|▍ | 556/11346 [09:04<2:54:48, 1.03it/s]
559
  5%|▍ | 557/11346 [09:05<2:54:44, 1.03it/s]
560
  5%|▍ | 558/11346 [09:06<2:54:55, 1.03it/s]
561
  5%|▍ | 559/11346 [09:07<2:54:51, 1.03it/s]
562
  5%|▍ | 560/11346 [09:08<2:54:48, 1.03it/s]
563
  5%|▍ | 561/11346 [09:09<2:54:47, 1.03it/s]
564
  5%|▍ | 562/11346 [09:10<2:54:45, 1.03it/s]
565
  5%|▍ | 563/11346 [09:11<2:54:42, 1.03it/s]
566
  5%|▍ | 564/11346 [09:12<2:54:41, 1.03it/s]
567
  5%|▍ | 565/11346 [09:13<2:54:45, 1.03it/s]
568
  5%|▍ | 566/11346 [09:14<2:54:41, 1.03it/s]
569
  5%|▍ | 567/11346 [09:15<2:54:43, 1.03it/s]
570
  5%|▌ | 568/11346 [09:16<2:54:40, 1.03it/s]
571
  5%|▌ | 569/11346 [09:17<2:54:35, 1.03it/s]
572
  5%|▌ | 570/11346 [09:18<2:54:32, 1.03it/s]
573
  5%|▌ | 571/11346 [09:19<2:54:34, 1.03it/s]
574
  5%|▌ | 572/11346 [09:20<2:54:32, 1.03it/s]
575
  5%|▌ | 573/11346 [09:21<2:54:33, 1.03it/s]
576
  5%|▌ | 574/11346 [09:22<2:54:33, 1.03it/s]
577
  5%|▌ | 575/11346 [09:23<2:54:29, 1.03it/s]
578
  5%|▌ | 576/11346 [09:24<2:54:28, 1.03it/s]
579
  5%|▌ | 577/11346 [09:25<2:54:25, 1.03it/s]
580
  5%|▌ | 578/11346 [09:26<2:54:24, 1.03it/s]
581
  5%|▌ | 579/11346 [09:27<2:54:27, 1.03it/s]
582
  5%|▌ | 580/11346 [09:28<2:54:25, 1.03it/s]
583
  5%|▌ | 581/11346 [09:29<2:54:21, 1.03it/s]
584
  5%|▌ | 582/11346 [09:30<2:54:26, 1.03it/s]
585
  5%|▌ | 583/11346 [09:31<2:54:24, 1.03it/s]
586
  5%|▌ | 584/11346 [09:32<2:54:22, 1.03it/s]
587
  5%|▌ | 585/11346 [09:33<2:54:21, 1.03it/s]
588
  5%|▌ | 586/11346 [09:34<2:54:17, 1.03it/s]
589
  5%|▌ | 587/11346 [09:34<2:54:17, 1.03it/s]
590
  5%|▌ | 588/11346 [09:35<2:54:13, 1.03it/s]
591
  5%|▌ | 589/11346 [09:36<2:54:18, 1.03it/s]
592
  5%|▌ | 590/11346 [09:37<2:54:15, 1.03it/s]
593
  5%|▌ | 591/11346 [09:38<2:54:09, 1.03it/s]
594
  5%|▌ | 592/11346 [09:39<2:54:09, 1.03it/s]
595
  5%|▌ | 593/11346 [09:40<2:54:13, 1.03it/s]
596
  5%|▌ | 594/11346 [09:41<2:54:12, 1.03it/s]
597
  5%|▌ | 595/11346 [09:42<2:54:13, 1.03it/s]
598
  5%|▌ | 596/11346 [09:43<2:54:10, 1.03it/s]
599
  5%|▌ | 597/11346 [09:44<2:54:09, 1.03it/s]
600
  5%|▌ | 598/11346 [09:45<2:54:06, 1.03it/s]
601
  5%|▌ | 599/11346 [09:46<2:54:12, 1.03it/s]
602
  5%|▌ | 600/11346 [09:47<2:54:08, 1.03it/s]
603
  5%|▌ | 601/11346 [09:48<2:54:08, 1.03it/s]
604
  5%|▌ | 602/11346 [09:49<2:54:07, 1.03it/s]
605
  5%|▌ | 603/11346 [09:50<2:54:12, 1.03it/s]
606
  5%|▌ | 604/11346 [09:51<2:54:10, 1.03it/s]
607
  5%|▌ | 605/11346 [09:52<2:54:10, 1.03it/s]
608
  5%|▌ | 606/11346 [09:53<2:54:09, 1.03it/s]
609
  5%|▌ | 607/11346 [09:54<2:54:06, 1.03it/s]
610
  5%|▌ | 608/11346 [09:55<2:54:06, 1.03it/s]
611
  5%|▌ | 609/11346 [09:56<2:54:06, 1.03it/s]
612
  5%|▌ | 610/11346 [09:57<2:54:03, 1.03it/s]
613
  5%|▌ | 611/11346 [09:58<2:54:02, 1.03it/s]
614
  5%|▌ | 612/11346 [09:59<2:54:01, 1.03it/s]
615
  5%|▌ | 613/11346 [10:00<2:53:56, 1.03it/s]
616
  5%|▌ | 614/11346 [10:01<2:53:56, 1.03it/s]
617
  5%|▌ | 615/11346 [10:02<2:53:53, 1.03it/s]
618
  5%|▌ | 616/11346 [10:03<2:53:48, 1.03it/s]
619
  5%|▌ | 617/11346 [10:04<2:53:48, 1.03it/s]
620
  5%|▌ | 618/11346 [10:05<2:53:46, 1.03it/s]
621
  5%|▌ | 619/11346 [10:06<2:53:50, 1.03it/s]
622
  5%|▌ | 620/11346 [10:07<2:53:49, 1.03it/s]
623
  5%|▌ | 621/11346 [10:08<2:53:50, 1.03it/s]
624
  5%|▌ | 622/11346 [10:09<2:53:46, 1.03it/s]
625
  5%|▌ | 623/11346 [10:09<2:53:45, 1.03it/s]
626
  5%|▌ | 624/11346 [10:10<2:53:45, 1.03it/s]
627
  6%|▌ | 625/11346 [10:11<2:53:48, 1.03it/s]
628
  6%|▌ | 626/11346 [10:12<2:53:47, 1.03it/s]
629
  6%|▌ | 627/11346 [10:13<2:53:42, 1.03it/s]
630
  6%|▌ | 628/11346 [10:14<2:53:45, 1.03it/s]
631
  6%|▌ | 629/11346 [10:15<2:53:41, 1.03it/s]
632
  6%|▌ | 630/11346 [10:16<2:53:39, 1.03it/s]
633
  6%|▌ | 631/11346 [10:17<2:53:36, 1.03it/s]
634
  6%|▌ | 632/11346 [10:18<2:53:35, 1.03it/s]
635
  6%|▌ | 633/11346 [10:19<2:53:36, 1.03it/s]
636
  6%|▌ | 634/11346 [10:20<2:53:35, 1.03it/s]
637
  6%|▌ | 635/11346 [10:21<2:53:34, 1.03it/s]
638
  6%|▌ | 636/11346 [10:22<2:53:36, 1.03it/s]
639
  6%|▌ | 637/11346 [10:23<2:53:29, 1.03it/s]
640
  6%|▌ | 638/11346 [10:24<2:53:28, 1.03it/s]
641
  6%|▌ | 639/11346 [10:25<2:53:30, 1.03it/s]
642
  6%|▌ | 640/11346 [10:26<2:53:28, 1.03it/s]
643
  6%|▌ | 641/11346 [10:27<2:53:28, 1.03it/s]
644
  6%|▌ | 642/11346 [10:28<2:53:24, 1.03it/s]
645
  6%|▌ | 643/11346 [10:29<2:53:26, 1.03it/s]
646
  6%|▌ | 644/11346 [10:30<2:53:27, 1.03it/s]
647
  6%|▌ | 645/11346 [10:31<2:53:27, 1.03it/s]
648
  6%|▌ | 646/11346 [10:32<2:53:26, 1.03it/s]
649
  6%|▌ | 647/11346 [10:33<2:53:26, 1.03it/s]
650
  6%|▌ | 648/11346 [10:34<2:53:25, 1.03it/s]
651
  6%|▌ | 649/11346 [10:35<2:53:23, 1.03it/s]
652
  6%|▌ | 650/11346 [10:36<2:53:19, 1.03it/s]
653
  6%|▌ | 651/11346 [10:37<2:53:19, 1.03it/s]
654
  6%|▌ | 652/11346 [10:38<2:53:27, 1.03it/s]
655
  6%|▌ | 653/11346 [10:39<2:53:24, 1.03it/s]
656
  6%|▌ | 654/11346 [10:40<2:53:21, 1.03it/s]
657
  6%|▌ | 655/11346 [10:41<2:53:29, 1.03it/s]
658
  6%|▌ | 656/11346 [10:42<2:53:21, 1.03it/s]
659
  6%|▌ | 657/11346 [10:43<2:53:16, 1.03it/s]
660
  6%|▌ | 658/11346 [10:44<2:53:16, 1.03it/s]
661
  6%|▌ | 659/11346 [10:45<2:53:17, 1.03it/s]
662
  6%|▌ | 660/11346 [10:45<2:53:15, 1.03it/s]
663
  6%|▌ | 661/11346 [10:46<2:53:14, 1.03it/s]
664
  6%|▌ | 662/11346 [10:47<2:53:15, 1.03it/s]
665
  6%|▌ | 663/11346 [10:48<2:53:12, 1.03it/s]
666
  6%|▌ | 664/11346 [10:49<2:53:10, 1.03it/s]
667
  6%|▌ | 665/11346 [10:50<2:53:03, 1.03it/s]
668
  6%|▌ | 666/11346 [10:51<2:53:05, 1.03it/s]
669
  6%|▌ | 667/11346 [10:52<2:53:08, 1.03it/s]
670
  6%|▌ | 668/11346 [10:53<2:53:06, 1.03it/s]
671
  6%|▌ | 669/11346 [10:54<2:53:03, 1.03it/s]
672
  6%|▌ | 670/11346 [10:55<2:52:58, 1.03it/s]
673
  6%|▌ | 671/11346 [10:56<2:53:01, 1.03it/s]
674
  6%|▌ | 672/11346 [10:57<2:53:05, 1.03it/s]
675
  6%|▌ | 673/11346 [10:58<2:53:06, 1.03it/s]
676
  6%|▌ | 674/11346 [10:59<2:53:06, 1.03it/s]
677
  6%|▌ | 675/11346 [11:00<2:52:57, 1.03it/s]
678
  6%|▌ | 676/11346 [11:01<2:53:00, 1.03it/s]
679
  6%|▌ | 677/11346 [11:02<2:52:58, 1.03it/s]
680
  6%|▌ | 678/11346 [11:03<2:52:58, 1.03it/s]
681
  6%|▌ | 679/11346 [11:04<2:52:51, 1.03it/s]
682
  6%|▌ | 680/11346 [11:05<2:52:48, 1.03it/s]
683
  6%|▌ | 681/11346 [11:06<2:52:44, 1.03it/s]
684
  6%|▌ | 682/11346 [11:07<2:52:45, 1.03it/s]
685
  6%|▌ | 683/11346 [11:08<2:52:45, 1.03it/s]
686
  6%|▌ | 684/11346 [11:09<2:52:44, 1.03it/s]
687
  6%|▌ | 685/11346 [11:10<2:52:48, 1.03it/s]
688
  6%|▌ | 686/11346 [11:11<2:52:43, 1.03it/s]
689
  6%|▌ | 687/11346 [11:12<2:52:38, 1.03it/s]
690
  6%|▌ | 688/11346 [11:13<2:52:38, 1.03it/s]
691
  6%|▌ | 689/11346 [11:14<2:52:39, 1.03it/s]
692
  6%|▌ | 690/11346 [11:15<2:52:38, 1.03it/s]
693
  6%|▌ | 691/11346 [11:16<2:52:46, 1.03it/s]
694
  6%|▌ | 692/11346 [11:17<2:52:42, 1.03it/s]
695
  6%|▌ | 693/11346 [11:18<2:52:41, 1.03it/s]
696
  6%|▌ | 694/11346 [11:19<2:52:39, 1.03it/s]
697
  6%|▌ | 695/11346 [11:20<2:52:39, 1.03it/s]
698
  6%|▌ | 696/11346 [11:20<2:52:35, 1.03it/s]
699
  6%|▌ | 697/11346 [11:21<2:52:37, 1.03it/s]
700
  6%|▌ | 698/11346 [11:22<2:52:38, 1.03it/s]
701
  6%|▌ | 699/11346 [11:23<2:52:33, 1.03it/s]
702
  6%|▌ | 700/11346 [11:24<2:52:31, 1.03it/s]
703
  6%|▌ | 701/11346 [11:25<2:52:29, 1.03it/s]
704
  6%|▌ | 702/11346 [11:26<2:52:29, 1.03it/s]
705
  6%|▌ | 703/11346 [11:27<2:52:29, 1.03it/s]
706
  6%|▌ | 704/11346 [11:28<2:52:26, 1.03it/s]
707
  6%|▌ | 705/11346 [11:29<2:52:21, 1.03it/s]
708
  6%|▌ | 706/11346 [11:30<2:52:24, 1.03it/s]
709
  6%|▌ | 707/11346 [11:31<2:52:20, 1.03it/s]
710
  6%|▌ | 708/11346 [11:32<2:52:20, 1.03it/s]
711
  6%|▌ | 709/11346 [11:33<2:52:20, 1.03it/s]
712
  6%|▋ | 710/11346 [11:34<2:52:20, 1.03it/s]
713
  6%|▋ | 711/11346 [11:35<2:52:18, 1.03it/s]
714
  6%|▋ | 712/11346 [11:36<2:52:15, 1.03it/s]
715
  6%|▋ | 713/11346 [11:37<2:52:13, 1.03it/s]
716
  6%|▋ | 714/11346 [11:38<2:52:13, 1.03it/s]
717
  6%|▋ | 715/11346 [11:39<2:52:13, 1.03it/s]
718
  6%|▋ | 716/11346 [11:40<2:52:14, 1.03it/s]
719
  6%|▋ | 717/11346 [11:41<2:52:14, 1.03it/s]
720
  6%|▋ | 718/11346 [11:42<2:52:13, 1.03it/s]
721
  6%|▋ | 719/11346 [11:43<2:52:08, 1.03it/s]
722
  6%|▋ | 720/11346 [11:44<2:52:05, 1.03it/s]
723
  6%|▋ | 721/11346 [11:45<2:52:00, 1.03it/s]
724
  6%|▋ | 722/11346 [11:46<2:52:01, 1.03it/s]
725
  6%|▋ | 723/11346 [11:47<2:52:05, 1.03it/s]
726
  6%|▋ | 724/11346 [11:48<2:52:05, 1.03it/s]
727
  6%|▋ | 725/11346 [11:49<2:52:02, 1.03it/s]
728
  6%|▋ | 726/11346 [11:50<2:52:06, 1.03it/s]
729
  6%|▋ | 727/11346 [11:51<2:52:06, 1.03it/s]
730
  6%|▋ | 728/11346 [11:52<2:52:02, 1.03it/s]
731
  6%|▋ | 729/11346 [11:53<2:52:02, 1.03it/s]
732
  6%|▋ | 730/11346 [11:54<2:52:03, 1.03it/s]
733
  6%|▋ | 731/11346 [11:55<2:52:02, 1.03it/s]
734
  6%|▋ | 732/11346 [11:55<2:52:00, 1.03it/s]
735
  6%|▋ | 733/11346 [11:56<2:52:01, 1.03it/s]
736
  6%|▋ | 734/11346 [11:57<2:51:58, 1.03it/s]
737
  6%|▋ | 735/11346 [11:58<2:52:00, 1.03it/s]
738
  6%|▋ | 736/11346 [11:59<2:51:54, 1.03it/s]
739
  6%|▋ | 737/11346 [12:00<2:51:58, 1.03it/s]
740
  7%|▋ | 738/11346 [12:01<2:51:58, 1.03it/s]
741
  7%|▋ | 739/11346 [12:02<2:51:56, 1.03it/s]
742
  7%|▋ | 740/11346 [12:03<2:51:52, 1.03it/s]
743
  7%|▋ | 741/11346 [12:04<2:52:01, 1.03it/s]
744
  7%|▋ | 742/11346 [12:05<2:51:56, 1.03it/s]
745
  7%|▋ | 743/11346 [12:06<2:51:52, 1.03it/s]
746
  7%|▋ | 744/11346 [12:07<2:51:49, 1.03it/s]
747
  7%|▋ | 745/11346 [12:08<2:51:51, 1.03it/s]
748
  7%|▋ | 746/11346 [12:09<2:51:55, 1.03it/s]
749
  7%|▋ | 747/11346 [12:10<2:51:54, 1.03it/s]
750
  7%|▋ | 748/11346 [12:11<3:04:33, 1.04s/it]
751
  7%|▋ | 749/11346 [12:12<3:00:39, 1.02s/it]
752
  7%|▋ | 750/11346 [12:13<2:57:52, 1.01s/it]
753
  7%|▋ | 751/11346 [12:14<2:56:02, 1.00it/s]
754
  7%|▋ | 752/11346 [12:15<2:54:40, 1.01it/s]
755
  7%|▋ | 753/11346 [12:16<2:53:46, 1.02it/s]
756
  7%|▋ | 754/11346 [12:17<2:53:09, 1.02it/s]
757
  7%|▋ | 755/11346 [12:18<2:52:43, 1.02it/s]
758
  7%|▋ | 756/11346 [12:19<2:52:19, 1.02it/s]
759
  7%|▋ | 757/11346 [12:20<2:52:06, 1.03it/s]
760
  7%|▋ | 758/11346 [12:21<2:51:53, 1.03it/s]
761
  7%|▋ | 759/11346 [12:22<2:51:44, 1.03it/s]
762
  7%|▋ | 760/11346 [12:23<2:51:40, 1.03it/s]
763
  7%|▋ | 761/11346 [12:24<2:51:34, 1.03it/s]
764
  7%|▋ | 762/11346 [12:25<2:51:31, 1.03it/s]
765
  7%|▋ | 763/11346 [12:26<2:51:28, 1.03it/s]
766
  7%|▋ | 764/11346 [12:27<2:51:28, 1.03it/s]
767
  7%|▋ | 765/11346 [12:28<2:51:27, 1.03it/s]
768
  7%|▋ | 766/11346 [12:29<2:51:20, 1.03it/s]
769
  7%|▋ | 767/11346 [12:30<2:51:18, 1.03it/s]
770
  7%|▋ | 768/11346 [12:31<2:51:19, 1.03it/s]
771
  7%|▋ | 769/11346 [12:32<2:51:21, 1.03it/s]
772
  7%|▋ | 770/11346 [12:33<2:51:22, 1.03it/s]
773
  7%|▋ | 771/11346 [12:34<2:51:17, 1.03it/s]
774
  7%|▋ | 772/11346 [12:35<2:51:17, 1.03it/s]
775
  7%|▋ | 773/11346 [12:36<2:51:16, 1.03it/s]
776
  7%|▋ | 774/11346 [12:37<2:51:12, 1.03it/s]
777
  7%|▋ | 775/11346 [12:38<2:51:12, 1.03it/s]
778
  7%|▋ | 776/11346 [12:39<2:51:08, 1.03it/s]
779
  7%|▋ | 777/11346 [12:39<2:51:11, 1.03it/s]
780
  7%|▋ | 778/11346 [12:40<2:51:10, 1.03it/s]
781
  7%|▋ | 779/11346 [12:41<2:51:10, 1.03it/s]
782
  7%|▋ | 780/11346 [12:42<2:51:08, 1.03it/s]
783
  7%|▋ | 781/11346 [12:43<2:51:05, 1.03it/s]
784
  7%|▋ | 782/11346 [12:44<2:51:02, 1.03it/s]
785
  7%|▋ | 783/11346 [12:45<2:51:01, 1.03it/s]
786
  7%|▋ | 784/11346 [12:46<2:51:02, 1.03it/s]
787
  7%|▋ | 785/11346 [12:47<2:51:05, 1.03it/s]
788
  7%|▋ | 786/11346 [12:48<2:51:04, 1.03it/s]
789
  7%|▋ | 787/11346 [12:49<2:51:02, 1.03it/s]
790
  7%|▋ | 788/11346 [12:50<2:51:02, 1.03it/s]
791
  7%|▋ | 789/11346 [12:51<2:51:01, 1.03it/s]
792
  7%|▋ | 790/11346 [12:52<2:50:58, 1.03it/s]
793
  7%|▋ | 791/11346 [12:53<2:51:00, 1.03it/s]
794
  7%|▋ | 792/11346 [12:54<2:50:56, 1.03it/s]
795
  7%|▋ | 793/11346 [12:55<2:50:56, 1.03it/s]
796
  7%|▋ | 794/11346 [12:56<2:50:57, 1.03it/s]
797
  7%|▋ | 795/11346 [12:57<2:50:53, 1.03it/s]
798
  7%|▋ | 796/11346 [12:58<2:50:54, 1.03it/s]
799
  7%|▋ | 797/11346 [12:59<2:50:55, 1.03it/s]
800
  7%|▋ | 798/11346 [13:00<2:50:59, 1.03it/s]
801
  7%|▋ | 799/11346 [13:01<2:50:54, 1.03it/s]
802
  7%|▋ | 800/11346 [13:02<2:50:47, 1.03it/s]
803
  7%|▋ | 801/11346 [13:03<2:50:48, 1.03it/s]
804
  7%|▋ | 802/11346 [13:04<2:50:51, 1.03it/s]
805
  7%|▋ | 803/11346 [13:05<2:50:51, 1.03it/s]
806
  7%|▋ | 804/11346 [13:06<2:50:50, 1.03it/s]
807
  7%|▋ | 805/11346 [13:07<2:50:49, 1.03it/s]
808
  7%|▋ | 806/11346 [13:08<2:50:47, 1.03it/s]
809
  7%|▋ | 807/11346 [13:09<2:50:44, 1.03it/s]
810
  7%|▋ | 808/11346 [13:10<2:50:40, 1.03it/s]
811
  7%|▋ | 809/11346 [13:11<2:50:35, 1.03it/s]
812
  7%|▋ | 810/11346 [13:12<2:50:41, 1.03it/s]
813
  7%|▋ | 811/11346 [13:13<2:50:39, 1.03it/s]
814
  7%|▋ | 812/11346 [13:13<2:50:37, 1.03it/s]
815
  7%|▋ | 813/11346 [13:14<2:50:35, 1.03it/s]
816
  7%|▋ | 814/11346 [13:15<2:50:35, 1.03it/s]
817
  7%|▋ | 815/11346 [13:16<2:50:42, 1.03it/s]
818
  7%|▋ | 816/11346 [13:17<2:50:37, 1.03it/s]
819
  7%|▋ | 817/11346 [13:18<2:50:36, 1.03it/s]
820
  7%|▋ | 818/11346 [13:19<2:50:35, 1.03it/s]
821
  7%|▋ | 819/11346 [13:20<2:50:33, 1.03it/s]
822
  7%|▋ | 820/11346 [13:21<2:50:35, 1.03it/s]
823
  7%|▋ | 821/11346 [13:22<2:50:38, 1.03it/s]
824
  7%|▋ | 822/11346 [13:23<2:50:32, 1.03it/s]
825
  7%|▋ | 823/11346 [13:24<2:50:27, 1.03it/s]
826
  7%|▋ | 824/11346 [13:25<2:50:24, 1.03it/s]
827
  7%|▋ | 825/11346 [13:26<2:50:27, 1.03it/s]
828
  7%|▋ | 826/11346 [13:27<2:50:27, 1.03it/s]
829
  7%|▋ | 827/11346 [13:28<2:50:26, 1.03it/s]
830
  7%|▋ | 828/11346 [13:29<2:50:33, 1.03it/s]
831
  7%|▋ | 829/11346 [13:30<2:50:29, 1.03it/s]
832
  7%|▋ | 830/11346 [13:31<2:50:24, 1.03it/s]
833
  7%|▋ | 831/11346 [13:32<2:50:23, 1.03it/s]
834
  7%|▋ | 832/11346 [13:33<2:50:24, 1.03it/s]
835
  7%|▋ | 833/11346 [13:34<2:50:20, 1.03it/s]
836
  7%|▋ | 834/11346 [13:35<2:50:16, 1.03it/s]
837
  7%|▋ | 835/11346 [13:36<2:50:12, 1.03it/s]
838
  7%|▋ | 836/11346 [13:37<2:50:16, 1.03it/s]
839
  7%|▋ | 837/11346 [13:38<2:50:17, 1.03it/s]
840
  7%|▋ | 838/11346 [13:39<2:50:15, 1.03it/s]
841
  7%|▋ | 839/11346 [13:40<2:50:13, 1.03it/s]
842
  7%|▋ | 840/11346 [13:41<2:50:10, 1.03it/s]
843
  7%|▋ | 841/11346 [13:42<2:50:10, 1.03it/s]
844
  7%|▋ | 842/11346 [13:43<2:50:10, 1.03it/s]
845
  7%|▋ | 843/11346 [13:44<2:50:07, 1.03it/s]
846
  7%|▋ | 844/11346 [13:45<2:50:02, 1.03it/s]
847
  7%|▋ | 845/11346 [13:46<2:49:58, 1.03it/s]
848
  7%|▋ | 846/11346 [13:47<2:50:00, 1.03it/s]
849
  7%|▋ | 847/11346 [13:48<2:50:03, 1.03it/s]
850
  7%|▋ | 848/11346 [13:48<2:50:03, 1.03it/s]
851
  7%|▋ | 849/11346 [13:49<2:50:05, 1.03it/s]
852
  7%|▋ | 850/11346 [13:50<2:50:01, 1.03it/s]
853
  8%|▊ | 851/11346 [13:51<2:50:09, 1.03it/s]
854
  8%|▊ | 852/11346 [13:52<2:50:04, 1.03it/s]
855
  8%|▊ | 853/11346 [13:53<2:50:03, 1.03it/s]
856
  8%|▊ | 854/11346 [13:54<2:50:04, 1.03it/s]
857
  8%|▊ | 855/11346 [13:55<2:50:01, 1.03it/s]
858
  8%|▊ | 856/11346 [13:56<2:49:57, 1.03it/s]
859
  8%|▊ | 857/11346 [13:57<2:49:57, 1.03it/s]
860
  8%|▊ | 858/11346 [13:58<2:49:55, 1.03it/s]
861
  8%|▊ | 859/11346 [13:59<2:49:52, 1.03it/s]
862
  8%|▊ | 860/11346 [14:00<2:49:51, 1.03it/s]
863
  8%|▊ | 861/11346 [14:01<2:49:48, 1.03it/s]
864
  8%|▊ | 862/11346 [14:02<2:49:46, 1.03it/s]
865
  8%|▊ | 863/11346 [14:03<2:49:45, 1.03it/s]
866
  8%|▊ | 864/11346 [14:04<2:49:47, 1.03it/s]
867
  8%|▊ | 865/11346 [14:05<2:49:48, 1.03it/s]
868
  8%|▊ | 866/11346 [14:06<2:49:48, 1.03it/s]
869
  8%|▊ | 867/11346 [14:07<2:49:48, 1.03it/s]
870
  8%|▊ | 868/11346 [14:08<2:49:51, 1.03it/s]
871
  8%|▊ | 869/11346 [14:09<2:49:48, 1.03it/s]
872
  8%|▊ | 870/11346 [14:10<2:49:48, 1.03it/s]
873
  8%|▊ | 871/11346 [14:11<2:49:43, 1.03it/s]
874
  8%|▊ | 872/11346 [14:12<2:49:38, 1.03it/s]
875
  8%|▊ | 873/11346 [14:13<2:49:38, 1.03it/s]
876
  8%|▊ | 874/11346 [14:14<2:49:41, 1.03it/s]
877
  8%|▊ | 875/11346 [14:15<2:49:38, 1.03it/s]
878
  8%|▊ | 876/11346 [14:16<2:49:35, 1.03it/s]
879
  8%|▊ | 877/11346 [14:17<2:49:34, 1.03it/s]
880
  8%|▊ | 878/11346 [14:18<2:49:31, 1.03it/s]
881
  8%|▊ | 879/11346 [14:19<2:49:34, 1.03it/s]
882
  8%|▊ | 880/11346 [14:20<2:49:32, 1.03it/s]
883
  8%|▊ | 881/11346 [14:21<2:49:32, 1.03it/s]
884
  8%|▊ | 882/11346 [14:22<2:49:39, 1.03it/s]
885
  8%|▊ | 883/11346 [14:23<2:49:32, 1.03it/s]
886
  8%|▊ | 884/11346 [14:23<2:49:25, 1.03it/s]
887
  8%|▊ | 885/11346 [14:24<2:49:24, 1.03it/s]
888
  8%|▊ | 886/11346 [14:25<2:49:23, 1.03it/s]
889
  8%|▊ | 887/11346 [14:26<2:49:24, 1.03it/s]
890
  8%|▊ | 888/11346 [14:27<2:49:25, 1.03it/s]
891
  8%|▊ | 889/11346 [14:28<2:49:21, 1.03it/s]
892
  8%|▊ | 890/11346 [14:29<2:49:17, 1.03it/s]
893
  8%|▊ | 891/11346 [14:30<2:49:20, 1.03it/s]
894
  8%|▊ | 892/11346 [14:31<2:49:22, 1.03it/s]
895
  8%|▊ | 893/11346 [14:32<2:49:17, 1.03it/s]
896
  8%|▊ | 894/11346 [14:33<2:49:19, 1.03it/s]
897
  8%|▊ | 895/11346 [14:34<2:49:22, 1.03it/s]
898
  8%|▊ | 896/11346 [14:35<2:49:19, 1.03it/s]
899
  8%|▊ | 897/11346 [14:36<2:49:17, 1.03it/s]
900
  8%|▊ | 898/11346 [14:37<2:49:24, 1.03it/s]
901
  8%|▊ | 899/11346 [14:38<2:49:20, 1.03it/s]
902
  8%|▊ | 900/11346 [14:39<2:49:14, 1.03it/s]
903
  8%|▊ | 901/11346 [14:40<2:49:16, 1.03it/s]
904
  8%|▊ | 902/11346 [14:41<2:49:12, 1.03it/s]
905
  8%|▊ | 903/11346 [14:42<2:49:08, 1.03it/s]
906
  8%|▊ | 904/11346 [14:43<2:49:13, 1.03it/s]
907
  8%|▊ | 905/11346 [14:44<2:49:17, 1.03it/s]
908
  8%|▊ | 906/11346 [14:45<2:49:15, 1.03it/s]
909
  8%|▊ | 907/11346 [14:46<2:49:08, 1.03it/s]
910
  8%|▊ | 908/11346 [14:47<2:49:09, 1.03it/s]
911
  8%|▊ | 909/11346 [14:48<2:49:06, 1.03it/s]
912
  8%|▊ | 910/11346 [14:49<2:49:07, 1.03it/s]
913
  8%|▊ | 911/11346 [14:50<2:49:04, 1.03it/s]
914
  8%|▊ | 912/11346 [14:51<2:49:13, 1.03it/s]
915
  8%|▊ | 913/11346 [14:52<2:49:08, 1.03it/s]
916
  8%|▊ | 914/11346 [14:53<2:49:06, 1.03it/s]
917
  8%|▊ | 915/11346 [14:54<2:49:03, 1.03it/s]
918
  8%|▊ | 916/11346 [14:55<2:49:04, 1.03it/s]
919
  8%|▊ | 917/11346 [14:56<2:49:02, 1.03it/s]
920
  8%|▊ | 918/11346 [14:57<2:49:00, 1.03it/s]
921
  8%|▊ | 919/11346 [14:58<2:48:58, 1.03it/s]
922
  8%|▊ | 920/11346 [14:58<2:49:00, 1.03it/s]
923
  8%|▊ | 921/11346 [14:59<2:48:58, 1.03it/s]
924
  8%|▊ | 922/11346 [15:00<2:49:00, 1.03it/s]
925
  8%|▊ | 923/11346 [15:01<2:49:00, 1.03it/s]
926
  8%|▊ | 924/11346 [15:02<2:48:57, 1.03it/s]
927
  8%|▊ | 925/11346 [15:03<2:48:52, 1.03it/s]
928
  8%|▊ | 926/11346 [15:04<2:48:47, 1.03it/s]
929
  8%|▊ | 927/11346 [15:05<2:48:45, 1.03it/s]
930
  8%|▊ | 928/11346 [15:06<2:48:44, 1.03it/s]
931
  8%|▊ | 929/11346 [15:07<2:48:45, 1.03it/s]
932
  8%|▊ | 930/11346 [15:08<2:48:47, 1.03it/s]
933
  8%|▊ | 931/11346 [15:09<2:48:46, 1.03it/s]
934
  8%|▊ | 932/11346 [15:10<2:48:43, 1.03it/s]
935
  8%|▊ | 933/11346 [15:11<2:48:43, 1.03it/s]
936
  8%|▊ | 934/11346 [15:12<2:48:42, 1.03it/s]
937
  8%|▊ | 935/11346 [15:13<2:48:41, 1.03it/s]
938
  8%|▊ | 936/11346 [15:14<2:48:37, 1.03it/s]
939
  8%|▊ | 937/11346 [15:15<2:48:32, 1.03it/s]
940
  8%|▊ | 938/11346 [15:16<2:48:42, 1.03it/s]
941
  8%|▊ | 939/11346 [15:17<2:48:41, 1.03it/s]
942
  8%|▊ | 940/11346 [15:18<2:48:38, 1.03it/s]
943
  8%|▊ | 941/11346 [15:19<2:48:35, 1.03it/s]
944
  8%|▊ | 942/11346 [15:20<2:48:35, 1.03it/s]
945
  8%|▊ | 943/11346 [15:21<2:48:30, 1.03it/s]
946
  8%|▊ | 944/11346 [15:22<2:48:26, 1.03it/s]
947
  8%|▊ | 945/11346 [15:23<2:48:24, 1.03it/s]
948
  8%|▊ | 946/11346 [15:24<2:48:26, 1.03it/s]
949
  8%|▊ | 947/11346 [15:25<2:48:34, 1.03it/s]
950
  8%|▊ | 948/11346 [15:26<2:48:28, 1.03it/s]
951
  8%|▊ | 949/11346 [15:27<2:48:28, 1.03it/s]
952
  8%|▊ | 950/11346 [15:28<2:48:30, 1.03it/s]
953
  8%|▊ | 951/11346 [15:29<2:48:30, 1.03it/s]
954
  8%|▊ | 952/11346 [15:30<2:48:31, 1.03it/s]
955
  8%|▊ | 953/11346 [15:31<2:48:28, 1.03it/s]
956
  8%|▊ | 954/11346 [15:32<2:48:31, 1.03it/s]
957
  8%|▊ | 955/11346 [15:33<2:48:25, 1.03it/s]
958
  8%|▊ | 956/11346 [15:33<2:48:19, 1.03it/s]
959
  8%|▊ | 957/11346 [15:34<2:48:20, 1.03it/s]
960
  8%|▊ | 958/11346 [15:35<2:48:17, 1.03it/s]
961
  8%|▊ | 959/11346 [15:36<2:48:16, 1.03it/s]
962
  8%|▊ | 960/11346 [15:37<2:48:15, 1.03it/s]
963
  8%|▊ | 961/11346 [15:38<2:48:15, 1.03it/s]
964
  8%|▊ | 962/11346 [15:39<2:48:13, 1.03it/s]
965
  8%|▊ | 963/11346 [15:40<2:48:11, 1.03it/s]
966
  8%|▊ | 964/11346 [15:41<2:48:13, 1.03it/s]
967
  9%|▊ | 965/11346 [15:42<2:48:12, 1.03it/s]
968
  9%|▊ | 966/11346 [15:43<2:48:09, 1.03it/s]
969
  9%|▊ | 967/11346 [15:44<2:48:09, 1.03it/s]
970
  9%|▊ | 968/11346 [15:45<2:48:11, 1.03it/s]
971
  9%|▊ | 969/11346 [15:46<2:48:09, 1.03it/s]
972
  9%|▊ | 970/11346 [15:47<2:48:04, 1.03it/s]
973
  9%|▊ | 971/11346 [15:48<2:48:03, 1.03it/s]
974
  9%|▊ | 972/11346 [15:49<2:48:06, 1.03it/s]
975
  9%|▊ | 973/11346 [15:50<2:48:06, 1.03it/s]
976
  9%|▊ | 974/11346 [15:51<2:48:00, 1.03it/s]
977
  9%|▊ | 975/11346 [15:52<2:48:02, 1.03it/s]
978
  9%|▊ | 976/11346 [15:53<2:48:03, 1.03it/s]
979
  9%|▊ | 977/11346 [15:54<2:48:03, 1.03it/s]
980
  9%|▊ | 978/11346 [15:55<2:47:59, 1.03it/s]
981
  9%|▊ | 979/11346 [15:56<2:47:59, 1.03it/s]
982
  9%|▊ | 980/11346 [15:57<2:47:57, 1.03it/s]
983
  9%|▊ | 981/11346 [15:58<2:47:51, 1.03it/s]
984
  9%|▊ | 982/11346 [15:59<2:47:47, 1.03it/s]
985
  9%|▊ | 983/11346 [16:00<2:47:45, 1.03it/s]
986
  9%|▊ | 984/11346 [16:01<2:47:51, 1.03it/s]
987
  9%|▊ | 985/11346 [16:02<2:47:50, 1.03it/s]
988
  9%|▊ | 986/11346 [16:03<2:47:49, 1.03it/s]
989
  9%|▊ | 987/11346 [16:04<2:47:50, 1.03it/s]
990
  9%|▊ | 988/11346 [16:05<2:47:47, 1.03it/s]
991
  9%|▊ | 989/11346 [16:06<2:47:46, 1.03it/s]
992
  9%|▊ | 990/11346 [16:07<2:47:42, 1.03it/s]
993
  9%|▊ | 991/11346 [16:08<2:47:49, 1.03it/s]
994
  9%|▊ | 992/11346 [16:08<2:47:49, 1.03it/s]
995
  9%|▉ | 993/11346 [16:09<2:47:48, 1.03it/s]
996
  9%|▉ | 994/11346 [16:10<2:47:55, 1.03it/s]
997
  9%|▉ | 995/11346 [16:11<2:47:53, 1.03it/s]
998
  9%|▉ | 996/11346 [16:12<2:47:48, 1.03it/s]
999
  9%|▉ | 997/11346 [16:13<2:47:48, 1.03it/s]
1000
  9%|▉ | 998/11346 [16:14<2:47:47, 1.03it/s]
1001
  9%|▉ | 999/11346 [16:15<2:47:44, 1.03it/s]
1002
  9%|▉ | 1000/11346 [16:16<2:47:39, 1.03it/s]
1003
 
1004
  9%|▉ | 1000/11346 [16:16<2:47:39, 1.03it/s][INFO|trainer.py:3662] 2024-06-05 03:21:57,117 >> ***** Running Evaluation *****
 
 
 
 
 
 
1005
  0%| | 0/39 [00:00<?, ?it/s]
 
1006
  5%|▌ | 2/39 [00:01<00:27, 1.34it/s]
 
1007
  8%|▊ | 3/39 [00:02<00:37, 1.05s/it]
 
1008
  10%|█ | 4/39 [00:04<00:42, 1.22s/it]
 
1009
  13%|█▎ | 5/39 [00:05<00:44, 1.31s/it]
 
1010
  15%|█▌ | 6/39 [00:07<00:45, 1.37s/it]
 
1011
  18%|█▊ | 7/39 [00:08<00:44, 1.41s/it]
 
1012
  21%|██ | 8/39 [00:10<00:44, 1.43s/it]
 
1013
  23%|██▎ | 9/39 [00:11<00:43, 1.45s/it]
 
1014
  26%|██▌ | 10/39 [00:13<00:42, 1.46s/it]
 
1015
  28%|██▊ | 11/39 [00:14<00:41, 1.47s/it]
 
1016
  31%|███ | 12/39 [00:16<00:39, 1.47s/it]
 
1017
  33%|███▎ | 13/39 [00:17<00:38, 1.48s/it]
 
1018
  36%|███▌ | 14/39 [00:19<00:36, 1.48s/it]
 
1019
  38%|███▊ | 15/39 [00:20<00:35, 1.48s/it]
 
1020
  41%|████ | 16/39 [00:22<00:34, 1.48s/it]
 
1021
  44%|████▎ | 17/39 [00:23<00:32, 1.48s/it]
 
1022
  46%|████▌ | 18/39 [00:25<00:31, 1.48s/it]
 
1023
  49%|████▊ | 19/39 [00:26<00:29, 1.48s/it]
 
1024
  51%|█████▏ | 20/39 [00:28<00:28, 1.48s/it]
 
1025
  54%|█████▍ | 21/39 [00:29<00:26, 1.48s/it]
 
1026
  56%|█████▋ | 22/39 [00:31<00:25, 1.48s/it]
 
1027
  59%|█████▉ | 23/39 [00:32<00:23, 1.48s/it]
 
1028
  62%|██████▏ | 24/39 [00:34<00:22, 1.48s/it]
 
1029
  64%|██████▍ | 25/39 [00:35<00:20, 1.48s/it]
 
1030
  67%|██████▋ | 26/39 [00:37<00:19, 1.48s/it]
 
1031
  69%|██████▉ | 27/39 [00:38<00:17, 1.48s/it]
 
1032
  72%|███████▏ | 28/39 [00:40<00:16, 1.48s/it]
 
1033
  74%|███████▍ | 29/39 [00:41<00:14, 1.48s/it]
 
1034
  77%|███████▋ | 30/39 [00:43<00:13, 1.48s/it]
 
1035
  79%|███████▉ | 31/39 [00:44<00:11, 1.48s/it]
 
1036
  82%|████████▏ | 32/39 [00:46<00:10, 1.48s/it]
 
1037
  85%|████████▍ | 33/39 [00:47<00:08, 1.48s/it]
 
1038
  87%|████████▋ | 34/39 [00:48<00:07, 1.48s/it]
 
1039
  90%|████████▉ | 35/39 [00:50<00:05, 1.48s/it]
 
1040
  92%|█████████▏| 36/39 [00:51<00:04, 1.48s/it]
 
1041
  95%|█████████▍| 37/39 [00:53<00:02, 1.48s/it]
 
1042
  97%|█████████▋| 38/39 [00:54<00:01, 1.46s/it]
 
1043
 
 
1044
 
1045
  9%|▉ | 1000/11346 [17:30<2:47:39, 1.03it/s]
 
 
1046
  [INFO|trainer.py:3353] 2024-06-05 03:23:11,169 >> Saving model checkpoint to ./training_outputs_job_117568_1_05-06_03-05/checkpoint-1000
 
 
 
 
 
 
 
 
 
 
1
+ 2024-06-05 03:05:23.315324: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2
+ 2024-06-05 03:05:23.315399: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-06-05 03:05:23.317038: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
4
+ 2024-06-05 03:05:23.326431: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
5
+ To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
6
+ 2024-06-05 03:05:26.483871: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
7
+ 06/05/2024 03:05:35 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 6, distributed training: False, 16-bits training: False
8
+ 06/05/2024 03:05:35 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
9
+ _n_gpu=6,
10
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None},
11
+ adafactor=False,
12
+ adam_beta1=0.9,
13
+ adam_beta2=0.999,
14
+ adam_epsilon=1e-08,
15
+ auto_find_batch_size=False,
16
+ bf16=False,
17
+ bf16_full_eval=False,
18
+ data_seed=None,
19
+ dataloader_drop_last=False,
20
+ dataloader_num_workers=0,
21
+ dataloader_persistent_workers=False,
22
+ dataloader_pin_memory=True,
23
+ dataloader_prefetch_factor=None,
24
+ ddp_backend=None,
25
+ ddp_broadcast_buffers=None,
26
+ ddp_bucket_cap_mb=None,
27
+ ddp_find_unused_parameters=None,
28
+ ddp_timeout=1800,
29
+ debug=[],
30
+ deepspeed=None,
31
+ disable_tqdm=False,
32
+ dispatch_batches=None,
33
+ do_eval=True,
34
+ do_predict=False,
35
+ do_train=True,
36
+ eval_accumulation_steps=None,
37
+ eval_delay=0,
38
+ eval_do_concat_batches=True,
39
+ eval_steps=1000,
40
+ eval_strategy=steps,
41
+ evaluation_strategy=None,
42
+ fp16=False,
43
+ fp16_backend=auto,
44
+ fp16_full_eval=False,
45
+ fp16_opt_level=O1,
46
+ fsdp=[],
47
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
48
+ fsdp_min_num_params=0,
49
+ fsdp_transformer_layer_cls_to_wrap=None,
50
+ full_determinism=False,
51
+ gradient_accumulation_steps=1,
52
+ gradient_checkpointing=False,
53
+ gradient_checkpointing_kwargs=None,
54
+ greater_is_better=None,
55
+ group_by_length=False,
56
+ half_precision_backend=auto,
57
+ hub_always_push=False,
58
+ hub_model_id=DorinSht/ShareGPT_llama2_68M,
59
+ hub_private_repo=False,
60
+ hub_strategy=all_checkpoints,
61
+ hub_token=<HUB_TOKEN>,
62
+ ignore_data_skip=False,
63
+ include_inputs_for_metrics=False,
64
+ include_num_input_tokens_seen=False,
65
+ include_tokens_per_second=False,
66
+ jit_mode_eval=False,
67
+ label_names=None,
68
+ label_smoothing_factor=0.0,
69
+ learning_rate=0.0001,
70
+ length_column_name=length,
71
+ load_best_model_at_end=False,
72
+ local_rank=0,
73
+ log_level=passive,
74
+ log_level_replica=warning,
75
+ log_on_each_node=True,
76
+ logging_dir=./training_outputs_job_117568_1_05-06_03-05,
77
+ logging_first_step=False,
78
+ logging_nan_inf_filter=True,
79
+ logging_steps=500,
80
+ logging_strategy=steps,
81
+ lr_scheduler_kwargs={},
82
+ lr_scheduler_type=linear,
83
+ max_grad_norm=1.0,
84
+ max_steps=-1,
85
+ metric_for_best_model=None,
86
+ mp_parameters=,
87
+ neftune_noise_alpha=None,
88
+ no_cuda=False,
89
+ num_train_epochs=3.0,
90
+ optim=adamw_torch,
91
+ optim_args=None,
92
+ optim_target_modules=None,
93
+ output_dir=./training_outputs_job_117568_1_05-06_03-05,
94
+ overwrite_output_dir=True,
95
+ past_index=-1,
96
+ per_device_eval_batch_size=8,
97
+ per_device_train_batch_size=4,
98
+ prediction_loss_only=False,
99
+ push_to_hub=True,
100
+ push_to_hub_model_id=None,
101
+ push_to_hub_organization=None,
102
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
103
+ ray_scope=last,
104
+ remove_unused_columns=True,
105
+ report_to=['tensorboard'],
106
+ restore_callback_states_from_checkpoint=False,
107
+ resume_from_checkpoint=None,
108
+ run_name=/home/dshteyma/target_draft_coupling_code/target_draft_training/training_outputs,
109
+ save_on_each_node=False,
110
+ save_only_model=False,
111
+ save_safetensors=True,
112
+ save_steps=1000,
113
+ save_strategy=steps,
114
+ save_total_limit=None,
115
+ seed=42,
116
+ skip_memory_metrics=True,
117
+ split_batches=None,
118
+ tf32=None,
119
+ torch_compile=False,
120
+ torch_compile_backend=None,
121
+ torch_compile_mode=None,
122
+ torchdynamo=None,
123
+ tpu_metrics_debug=False,
124
+ tpu_num_cores=None,
125
+ use_cpu=False,
126
+ use_ipex=False,
127
+ use_legacy_prediction_loop=False,
128
+ use_mps_device=False,
129
+ warmup_ratio=0.05,
130
+ warmup_steps=0,
131
+ weight_decay=0.01,
132
+ )
133
+ Using custom data configuration default-afe4b27d28cbdcb1
134
+ 06/05/2024 03:05:35 - INFO - datasets.builder - Using custom data configuration default-afe4b27d28cbdcb1
135
+ Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
136
+ 06/05/2024 03:05:35 - INFO - datasets.info - Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
137
+ Overwrite dataset info from restored data version if exists.
138
+ 06/05/2024 03:05:36 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
139
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
140
+ 06/05/2024 03:05:36 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
141
+ 06/05/2024 03:05:36 - INFO - datasets.builder - Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
142
+ Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
143
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
144
+ 06/05/2024 03:05:36 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
145
+ Using custom data configuration default-afe4b27d28cbdcb1
146
+ 06/05/2024 03:05:36 - INFO - datasets.builder - Using custom data configuration default-afe4b27d28cbdcb1
147
+ Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
148
+ 06/05/2024 03:05:36 - INFO - datasets.info - Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
149
+ 06/05/2024 03:05:36 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
150
+ Overwrite dataset info from restored data version if exists.
151
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
152
+ 06/05/2024 03:05:36 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
153
+ Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
154
+ 06/05/2024 03:05:36 - INFO - datasets.builder - Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
155
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
156
+ 06/05/2024 03:05:36 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
157
+ Using custom data configuration default-afe4b27d28cbdcb1
158
+ 06/05/2024 03:05:37 - INFO - datasets.builder - Using custom data configuration default-afe4b27d28cbdcb1
159
+ Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
160
+ 06/05/2024 03:05:37 - INFO - datasets.info - Loading Dataset Infos from /home/dshteyma/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json
161
+ Overwrite dataset info from restored data version if exists.
162
+ 06/05/2024 03:05:37 - INFO - datasets.builder - Overwrite dataset info from restored data version if exists.
163
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
164
+ 06/05/2024 03:05:37 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
165
+ 06/05/2024 03:05:37 - INFO - datasets.builder - Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
166
+ Found cached dataset json (/home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7)
167
+ Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
168
+ 06/05/2024 03:05:37 - INFO - datasets.info - Loading Dataset info from /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7
169
+ [INFO|configuration_utils.py:726] 2024-06-05 03:05:37,626 >> loading configuration file config.json from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/config.json
170
+ [INFO|configuration_utils.py:789] 2024-06-05 03:05:37,628 >> Model config LlamaConfig {
171
+ "_name_or_path": "JackFram/llama-68m",
172
+ "architectures": [
173
+ "LlamaForCausalLM"
174
+ ],
175
+ "attention_bias": false,
176
+ "attention_dropout": 0.0,
177
+ "bos_token_id": 0,
178
+ "eos_token_id": 2,
179
+ "hidden_act": "silu",
180
+ "hidden_size": 768,
181
+ "initializer_range": 0.02,
182
+ "intermediate_size": 3072,
183
+ "max_position_embeddings": 2048,
184
+ "model_type": "llama",
185
+ "num_attention_heads": 12,
186
+ "num_hidden_layers": 2,
187
+ "num_key_value_heads": 12,
188
+ "pad_token_id": 1,
189
+ "pretraining_tp": 1,
190
+ "rms_norm_eps": 1e-06,
191
+ "rope_scaling": null,
192
+ "rope_theta": 10000.0,
193
+ "tie_word_embeddings": false,
194
+ "torch_dtype": "float32",
195
+ "transformers_version": "4.41.0.dev0",
196
+ "use_cache": true,
197
+ "vocab_size": 32000
198
+ }
199
+
200
+ [INFO|tokenization_utils_base.py:2102] 2024-06-05 03:05:37,771 >> loading file tokenizer.model from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/tokenizer.model
201
+ [INFO|tokenization_utils_base.py:2102] 2024-06-05 03:05:37,771 >> loading file tokenizer.json from cache at None
202
+ [INFO|tokenization_utils_base.py:2102] 2024-06-05 03:05:37,771 >> loading file added_tokens.json from cache at None
203
+ [INFO|tokenization_utils_base.py:2102] 2024-06-05 03:05:37,771 >> loading file special_tokens_map.json from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/special_tokens_map.json
204
+ [INFO|tokenization_utils_base.py:2102] 2024-06-05 03:05:37,771 >> loading file tokenizer_config.json from cache at /home/dshteyma/.cache/huggingface/hub/models--JackFram--llama-68m/snapshots/964a5d77df908b69f8d6476fb70e940425b04cb5/tokenizer_config.json
205
+ [WARNING|logging.py:329] 2024-06-05 03:05:37,772 >> You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
206
+ [WARNING|logging.py:329] 2024-06-05 03:05:37,868 >> You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
207
+ [INFO|configuration_utils.py:936] 2024-06-05 03:05:38,449 >> Generate config GenerationConfig {
208
+ "bos_token_id": 0,
209
+ "eos_token_id": 2,
210
+ "pad_token_id": 1
211
+ }
212
+
213
+ 06/05/2024 03:05:39 - INFO - __main__ - Training new model from scratch - Total size=64.88M params
214
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-988d048fea8d2473.arrow
215
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-988d048fea8d2473.arrow
216
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e281c930893bca9.arrow
217
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e281c930893bca9.arrow
218
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-3fe350bccdda6078.arrow
219
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-3fe350bccdda6078.arrow
220
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-35d09b588a0c62b9.arrow
221
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-35d09b588a0c62b9.arrow
222
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e5279ee31a5d8d3.arrow
223
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-4e5279ee31a5d8d3.arrow
224
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-63d56456928edd43.arrow
225
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-63d56456928edd43.arrow
226
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-6a784a78d9818240.arrow
227
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-6a784a78d9818240.arrow
228
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-46540f58a00a92bf.arrow
229
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-46540f58a00a92bf.arrow
230
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-73605724efaea9d2.arrow
231
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-73605724efaea9d2.arrow
232
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-83d3df87e1b82021.arrow
233
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-83d3df87e1b82021.arrow
234
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-efdbb02491aa6344.arrow
235
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-efdbb02491aa6344.arrow
236
+ 06/05/2024 03:05:39 - INFO - datasets.arrow_dataset - Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-0cf2ae38fef927f3.arrow
237
+ Loading cached processed dataset at /home/dshteyma/.cache/huggingface/datasets/json/default-afe4b27d28cbdcb1/0.0.0/c8d2d9508a2a2067ab02cd118834ecef34c3700d143b31835ec4235bf10109f7/cache-0cf2ae38fef927f3.arrow
238
+ 06/05/2024 03:05:39 - WARNING - accelerate.utils.other - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
239
+ [INFO|trainer.py:2068] 2024-06-05 03:05:40,316 >> ***** Running training *****
240
+ [INFO|trainer.py:2069] 2024-06-05 03:05:40,316 >> Num examples = 90,745
241
+ [INFO|trainer.py:2070] 2024-06-05 03:05:40,316 >> Num Epochs = 3
242
+ [INFO|trainer.py:2071] 2024-06-05 03:05:40,316 >> Instantaneous batch size per device = 4
243
+ [INFO|trainer.py:2073] 2024-06-05 03:05:40,316 >> Training with DataParallel so batch size has been adjusted to: 24
244
+ [INFO|trainer.py:2074] 2024-06-05 03:05:40,316 >> Total train batch size (w. parallel, distributed & accumulation) = 24
245
+ [INFO|trainer.py:2075] 2024-06-05 03:05:40,316 >> Gradient Accumulation steps = 1
246
+ [INFO|trainer.py:2076] 2024-06-05 03:05:40,316 >> Total optimization steps = 11,346
247
+ [INFO|trainer.py:2077] 2024-06-05 03:05:40,317 >> Number of trainable parameters = 68,030,208
248
+
249
  0%| | 0/11346 [00:00<?, ?it/s]/home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
250
+ warnings.warn('Was asked to gather along dimension 0, but all '
251
+
252
  0%| | 1/11346 [00:04<15:15:06, 4.84s/it]
253
  0%| | 2/11346 [00:05<8:04:02, 2.56s/it]
254
  0%| | 3/11346 [00:06<5:46:22, 1.83s/it]
255
  0%| | 4/11346 [00:07<4:41:45, 1.49s/it]
256
  0%| | 5/11346 [00:08<4:06:03, 1.30s/it]
257
  0%| | 6/11346 [00:09<3:44:22, 1.19s/it]
258
  0%| | 7/11346 [00:10<3:30:41, 1.11s/it]
259
  0%| | 8/11346 [00:11<3:21:54, 1.07s/it]
260
  0%| | 9/11346 [00:12<3:15:57, 1.04s/it]
261
  0%| | 10/11346 [00:13<3:11:49, 1.02s/it]
262
  0%| | 11/11346 [00:14<3:09:05, 1.00s/it]
263
  0%| | 12/11346 [00:15<3:07:02, 1.01it/s]
264
  0%| | 13/11346 [00:16<3:05:37, 1.02it/s]
265
  0%| | 14/11346 [00:17<3:04:44, 1.02it/s]
266
  0%| | 15/11346 [00:18<3:04:01, 1.03it/s]
267
  0%| | 16/11346 [00:19<3:03:31, 1.03it/s]
268
  0%| | 17/11346 [00:20<3:04:21, 1.02it/s]
269
  0%| | 18/11346 [00:21<3:06:59, 1.01it/s]
270
  0%| | 19/11346 [00:22<3:05:57, 1.02it/s]
271
  0%| | 20/11346 [00:23<3:05:22, 1.02it/s]
272
  0%| | 21/11346 [00:24<3:04:28, 1.02it/s]
273
  0%| | 22/11346 [00:25<3:03:54, 1.03it/s]
274
  0%| | 23/11346 [00:26<3:03:38, 1.03it/s]
275
  0%| | 24/11346 [00:27<3:03:17, 1.03it/s]
276
  0%| | 25/11346 [00:28<3:03:02, 1.03it/s]
277
  0%| | 26/11346 [00:29<3:02:51, 1.03it/s]
278
  0%| | 27/11346 [00:30<3:02:38, 1.03it/s]
279
  0%| | 28/11346 [00:31<3:02:32, 1.03it/s]
280
  0%| | 29/11346 [00:32<3:02:30, 1.03it/s]
281
  0%| | 30/11346 [00:32<3:02:27, 1.03it/s]
282
  0%| | 31/11346 [00:33<3:02:27, 1.03it/s]
283
  0%| | 32/11346 [00:34<3:02:28, 1.03it/s]
284
  0%| | 33/11346 [00:35<3:02:33, 1.03it/s]
285
  0%| | 34/11346 [00:36<3:02:39, 1.03it/s]
286
  0%| | 35/11346 [00:37<3:02:48, 1.03it/s]
287
  0%| | 36/11346 [00:38<3:02:46, 1.03it/s]
288
  0%| | 37/11346 [00:39<3:02:52, 1.03it/s]
289
  0%| | 38/11346 [00:40<3:02:45, 1.03it/s]
290
  0%| | 39/11346 [00:41<3:02:40, 1.03it/s]
291
  0%| | 40/11346 [00:42<3:02:37, 1.03it/s]
292
  0%| | 41/11346 [00:43<3:02:27, 1.03it/s]
293
  0%| | 42/11346 [00:44<3:02:25, 1.03it/s]
294
  0%| | 43/11346 [00:45<3:02:24, 1.03it/s]
295
  0%| | 44/11346 [00:46<3:02:22, 1.03it/s]
296
  0%| | 45/11346 [00:47<3:02:21, 1.03it/s]
297
  0%| | 46/11346 [00:48<3:02:27, 1.03it/s]
298
  0%| | 47/11346 [00:49<3:02:26, 1.03it/s]
299
  0%| | 48/11346 [00:50<3:02:23, 1.03it/s]
300
  0%| | 49/11346 [00:51<3:02:30, 1.03it/s]
301
  0%| | 50/11346 [00:52<3:02:36, 1.03it/s]
302
  0%| | 51/11346 [00:53<3:02:38, 1.03it/s]
303
  0%| | 52/11346 [00:54<3:02:47, 1.03it/s]
304
  0%| | 53/11346 [00:55<3:02:52, 1.03it/s]
305
  0%| | 54/11346 [00:56<3:02:47, 1.03it/s]
306
  0%| | 55/11346 [00:57<3:02:48, 1.03it/s]
307
  0%| | 56/11346 [00:58<3:02:50, 1.03it/s]
308
  1%| | 57/11346 [00:59<3:02:51, 1.03it/s]
309
  1%| | 58/11346 [01:00<3:02:49, 1.03it/s]
310
  1%| | 59/11346 [01:01<3:02:35, 1.03it/s]
311
  1%| | 60/11346 [01:02<3:02:36, 1.03it/s]
312
  1%| | 61/11346 [01:03<3:02:29, 1.03it/s]
313
  1%| | 62/11346 [01:04<3:02:34, 1.03it/s]
314
  1%| | 63/11346 [01:04<3:02:34, 1.03it/s]
315
  1%| | 64/11346 [01:05<3:02:36, 1.03it/s]
316
  1%| | 65/11346 [01:06<3:02:35, 1.03it/s]
317
  1%| | 66/11346 [01:07<3:02:31, 1.03it/s]
318
  1%| | 67/11346 [01:08<3:02:33, 1.03it/s]
319
  1%| | 68/11346 [01:09<3:02:32, 1.03it/s]
320
  1%| | 69/11346 [01:10<3:02:34, 1.03it/s]
321
  1%| | 70/11346 [01:11<3:02:37, 1.03it/s]
322
  1%| | 71/11346 [01:12<3:02:31, 1.03it/s]
323
  1%| | 72/11346 [01:13<3:02:35, 1.03it/s]
324
  1%| | 73/11346 [01:14<3:02:39, 1.03it/s]
325
  1%| | 74/11346 [01:15<3:02:39, 1.03it/s]
326
  1%| | 75/11346 [01:16<3:02:28, 1.03it/s]
327
  1%| | 76/11346 [01:17<3:02:26, 1.03it/s]
328
  1%| | 77/11346 [01:18<3:02:26, 1.03it/s]
329
  1%| | 78/11346 [01:19<3:02:28, 1.03it/s]
330
  1%| | 79/11346 [01:20<3:02:26, 1.03it/s]
331
  1%| | 80/11346 [01:21<3:02:30, 1.03it/s]
332
  1%| | 81/11346 [01:22<3:02:28, 1.03it/s]
333
  1%| | 82/11346 [01:23<3:02:30, 1.03it/s]
334
  1%| | 83/11346 [01:24<3:02:24, 1.03it/s]
335
  1%| | 84/11346 [01:25<3:02:28, 1.03it/s]
336
  1%| | 85/11346 [01:26<3:02:25, 1.03it/s]
337
  1%| | 86/11346 [01:27<3:02:27, 1.03it/s]
338
  1%| | 87/11346 [01:28<3:02:31, 1.03it/s]
339
  1%| | 88/11346 [01:29<3:02:34, 1.03it/s]
340
  1%| | 89/11346 [01:30<3:02:35, 1.03it/s]
341
  1%| | 90/11346 [01:31<3:02:33, 1.03it/s]
342
  1%| | 91/11346 [01:32<3:02:30, 1.03it/s]
343
  1%| | 92/11346 [01:33<3:02:28, 1.03it/s]
344
  1%| | 93/11346 [01:34<3:02:18, 1.03it/s]
345
  1%| | 94/11346 [01:35<3:02:18, 1.03it/s]
346
  1%| | 95/11346 [01:36<3:02:19, 1.03it/s]
347
  1%| | 96/11346 [01:37<3:02:13, 1.03it/s]
348
  1%| | 97/11346 [01:38<3:02:16, 1.03it/s]
349
  1%| | 98/11346 [01:38<3:02:10, 1.03it/s]
350
  1%| | 99/11346 [01:39<3:02:15, 1.03it/s]
351
  1%| | 100/11346 [01:40<3:02:17, 1.03it/s]
352
  1%| | 101/11346 [01:41<3:02:09, 1.03it/s]
353
  1%| | 102/11346 [01:42<3:02:11, 1.03it/s]
354
  1%| | 103/11346 [01:43<3:02:13, 1.03it/s]
355
  1%| | 104/11346 [01:44<3:02:14, 1.03it/s]
356
  1%| | 105/11346 [01:45<3:02:17, 1.03it/s]
357
  1%| | 106/11346 [01:46<3:02:24, 1.03it/s]
358
  1%| | 107/11346 [01:47<3:02:23, 1.03it/s]
359
  1%| | 108/11346 [01:48<3:02:19, 1.03it/s]
360
  1%| | 109/11346 [01:49<3:02:12, 1.03it/s]
361
  1%| | 110/11346 [01:50<3:02:17, 1.03it/s]
362
  1%| | 111/11346 [01:51<3:02:21, 1.03it/s]
363
  1%| | 112/11346 [01:52<3:02:20, 1.03it/s]
364
  1%| | 113/11346 [01:53<3:02:08, 1.03it/s]
365
  1%| | 114/11346 [01:54<3:02:11, 1.03it/s]
366
  1%| | 115/11346 [01:55<3:02:06, 1.03it/s]
367
  1%| | 116/11346 [01:56<3:02:02, 1.03it/s]
368
  1%| | 117/11346 [01:57<3:02:01, 1.03it/s]
369
  1%| | 118/11346 [01:58<3:02:04, 1.03it/s]
370
  1%| | 119/11346 [01:59<3:02:06, 1.03it/s]
371
  1%| | 120/11346 [02:00<3:02:03, 1.03it/s]
372
  1%| | 121/11346 [02:01<3:02:03, 1.03it/s]
373
  1%| | 122/11346 [02:02<3:02:00, 1.03it/s]
374
  1%| | 123/11346 [02:03<3:02:07, 1.03it/s]
375
  1%| | 124/11346 [02:04<3:02:06, 1.03it/s]
376
  1%| | 125/11346 [02:05<3:02:04, 1.03it/s]
377
  1%| | 126/11346 [02:06<3:02:01, 1.03it/s]
378
  1%| | 127/11346 [02:07<3:02:09, 1.03it/s]
379
  1%| | 128/11346 [02:08<3:02:00, 1.03it/s]
380
  1%| | 129/11346 [02:09<3:02:01, 1.03it/s]
381
  1%| | 130/11346 [02:10<3:02:00, 1.03it/s]
382
  1%| | 131/11346 [02:11<3:02:05, 1.03it/s]
383
  1%| | 132/11346 [02:12<3:02:04, 1.03it/s]
384
  1%| | 133/11346 [02:13<3:01:55, 1.03it/s]
385
  1%| | 134/11346 [02:14<3:01:57, 1.03it/s]
386
  1%| | 135/11346 [02:15<3:01:53, 1.03it/s]
387
  1%| | 136/11346 [02:15<3:01:44, 1.03it/s]
388
  1%| | 137/11346 [02:16<3:01:44, 1.03it/s]
389
  1%| | 138/11346 [02:17<3:01:41, 1.03it/s]
390
  1%| | 139/11346 [02:18<3:01:44, 1.03it/s]
391
  1%| | 140/11346 [02:19<3:01:46, 1.03it/s]
392
  1%| | 141/11346 [02:20<3:01:46, 1.03it/s]
393
  1%|▏ | 142/11346 [02:21<3:01:48, 1.03it/s]
394
  1%|▏ | 143/11346 [02:22<3:01:39, 1.03it/s]
395
  1%|▏ | 144/11346 [02:23<3:01:43, 1.03it/s]
396
  1%|▏ | 145/11346 [02:24<3:01:43, 1.03it/s]
397
  1%|▏ | 146/11346 [02:25<3:01:37, 1.03it/s]
398
  1%|▏ | 147/11346 [02:26<3:01:42, 1.03it/s]
399
  1%|▏ | 148/11346 [02:27<3:01:44, 1.03it/s]
400
  1%|▏ | 149/11346 [02:28<3:01:44, 1.03it/s]
401
  1%|▏ | 150/11346 [02:29<3:01:47, 1.03it/s]
402
  1%|▏ | 151/11346 [02:30<3:01:43, 1.03it/s]
403
  1%|▏ | 152/11346 [02:31<3:01:43, 1.03it/s]
404
  1%|▏ | 153/11346 [02:32<3:01:37, 1.03it/s]
405
  1%|▏ | 154/11346 [02:33<3:01:38, 1.03it/s]
406
  1%|▏ | 155/11346 [02:34<3:01:32, 1.03it/s]
407
  1%|▏ | 156/11346 [02:35<3:01:33, 1.03it/s]
408
  1%|▏ | 157/11346 [02:36<3:01:29, 1.03it/s]
409
  1%|▏ | 158/11346 [02:37<3:01:24, 1.03it/s]
410
  1%|▏ | 159/11346 [02:38<3:01:23, 1.03it/s]
411
  1%|▏ | 160/11346 [02:39<3:01:30, 1.03it/s]
412
  1%|▏ | 161/11346 [02:40<3:01:33, 1.03it/s]
413
  1%|▏ | 162/11346 [02:41<3:01:28, 1.03it/s]
414
  1%|▏ | 163/11346 [02:42<3:01:27, 1.03it/s]
415
  1%|▏ | 164/11346 [02:43<3:01:27, 1.03it/s]
416
  1%|▏ | 165/11346 [02:44<3:01:27, 1.03it/s]
417
  1%|▏ | 166/11346 [02:45<3:01:20, 1.03it/s]
418
  1%|▏ | 167/11346 [02:46<3:01:20, 1.03it/s]
419
  1%|▏ | 168/11346 [02:47<3:01:15, 1.03it/s]
420
  1%|▏ | 169/11346 [02:48<3:01:17, 1.03it/s]
421
  1%|▏ | 170/11346 [02:49<3:01:17, 1.03it/s]
422
  2%|▏ | 171/11346 [02:50<3:01:21, 1.03it/s]
423
  2%|▏ | 172/11346 [02:51<3:01:16, 1.03it/s]
424
  2%|▏ | 173/11346 [02:52<3:01:20, 1.03it/s]
425
  2%|▏ | 174/11346 [02:52<3:01:22, 1.03it/s]
426
  2%|▏ | 175/11346 [02:53<3:01:23, 1.03it/s]
427
  2%|▏ | 176/11346 [02:54<3:01:27, 1.03it/s]
428
  2%|▏ | 177/11346 [02:55<3:01:28, 1.03it/s]
429
  2%|▏ | 178/11346 [02:56<3:01:20, 1.03it/s]
430
  2%|▏ | 179/11346 [02:57<3:01:14, 1.03it/s]
431
  2%|▏ | 180/11346 [02:58<3:01:12, 1.03it/s]
432
  2%|▏ | 181/11346 [02:59<3:01:27, 1.03it/s]
433
  2%|▏ | 182/11346 [03:00<3:01:28, 1.03it/s]
434
  2%|▏ | 183/11346 [03:01<3:01:20, 1.03it/s]
435
  2%|▏ | 184/11346 [03:02<3:01:20, 1.03it/s]
436
  2%|▏ | 185/11346 [03:03<3:01:08, 1.03it/s]
437
  2%|▏ | 186/11346 [03:04<3:01:13, 1.03it/s]
438
  2%|▏ | 187/11346 [03:05<3:01:19, 1.03it/s]
439
  2%|▏ | 188/11346 [03:06<3:01:16, 1.03it/s]
440
  2%|▏ | 189/11346 [03:07<3:01:13, 1.03it/s]
441
  2%|▏ | 190/11346 [03:08<3:01:09, 1.03it/s]
442
  2%|▏ | 191/11346 [03:09<3:01:10, 1.03it/s]
443
  2%|▏ | 192/11346 [03:10<3:01:10, 1.03it/s]
444
  2%|▏ | 193/11346 [03:11<3:01:02, 1.03it/s]
445
  2%|▏ | 194/11346 [03:12<3:01:06, 1.03it/s]
446
  2%|▏ | 195/11346 [03:13<3:01:03, 1.03it/s]
447
  2%|▏ | 196/11346 [03:14<3:01:09, 1.03it/s]
448
  2%|▏ | 197/11346 [03:15<3:01:08, 1.03it/s]
449
  2%|▏ | 198/11346 [03:16<3:01:05, 1.03it/s]
450
  2%|▏ | 199/11346 [03:17<3:01:02, 1.03it/s]
451
  2%|▏ | 200/11346 [03:18<3:00:55, 1.03it/s]
452
  2%|▏ | 201/11346 [03:19<3:00:59, 1.03it/s]
453
  2%|▏ | 202/11346 [03:20<3:01:04, 1.03it/s]
454
  2%|▏ | 203/11346 [03:21<3:01:01, 1.03it/s]
455
  2%|▏ | 204/11346 [03:22<3:01:02, 1.03it/s]
456
  2%|▏ | 205/11346 [03:23<3:00:57, 1.03it/s]
457
  2%|▏ | 206/11346 [03:24<3:00:55, 1.03it/s]
458
  2%|▏ | 207/11346 [03:25<3:00:55, 1.03it/s]
459
  2%|▏ | 208/11346 [03:26<3:00:50, 1.03it/s]
460
  2%|▏ | 209/11346 [03:27<3:00:50, 1.03it/s]
461
  2%|▏ | 210/11346 [03:28<3:00:49, 1.03it/s]
462
  2%|▏ | 211/11346 [03:29<3:00:48, 1.03it/s]
463
  2%|▏ | 212/11346 [03:30<3:00:46, 1.03it/s]
464
  2%|▏ | 213/11346 [03:30<3:00:49, 1.03it/s]
465
  2%|▏ | 214/11346 [03:31<3:00:51, 1.03it/s]
466
  2%|▏ | 215/11346 [03:32<3:00:50, 1.03it/s]
467
  2%|▏ | 216/11346 [03:33<3:00:49, 1.03it/s]
468
  2%|▏ | 217/11346 [03:34<3:00:41, 1.03it/s]
469
  2%|▏ | 218/11346 [03:35<3:00:43, 1.03it/s]
470
  2%|▏ | 219/11346 [03:36<3:00:43, 1.03it/s]
471
  2%|▏ | 220/11346 [03:37<3:00:45, 1.03it/s]
472
  2%|▏ | 221/11346 [03:38<3:00:43, 1.03it/s]
473
  2%|▏ | 222/11346 [03:39<3:00:34, 1.03it/s]
474
  2%|▏ | 223/11346 [03:40<3:00:36, 1.03it/s]
475
  2%|▏ | 224/11346 [03:41<3:00:39, 1.03it/s]
476
  2%|▏ | 225/11346 [03:42<3:00:41, 1.03it/s]
477
  2%|▏ | 226/11346 [03:43<3:00:35, 1.03it/s]
478
  2%|▏ | 227/11346 [03:44<3:00:33, 1.03it/s]
479
  2%|▏ | 228/11346 [03:45<3:00:32, 1.03it/s]
480
  2%|▏ | 229/11346 [03:46<3:00:33, 1.03it/s]
481
  2%|▏ | 230/11346 [03:47<3:00:32, 1.03it/s]
482
  2%|▏ | 231/11346 [03:48<3:00:35, 1.03it/s]
483
  2%|▏ | 232/11346 [03:49<3:00:36, 1.03it/s]
484
  2%|▏ | 233/11346 [03:50<3:00:32, 1.03it/s]
485
  2%|▏ | 234/11346 [03:51<3:00:35, 1.03it/s]
486
  2%|▏ | 235/11346 [03:52<3:00:35, 1.03it/s]
487
  2%|▏ | 236/11346 [03:53<3:00:35, 1.03it/s]
488
  2%|▏ | 237/11346 [03:54<3:00:34, 1.03it/s]
489
  2%|▏ | 238/11346 [03:55<3:00:38, 1.02it/s]
490
  2%|▏ | 239/11346 [03:56<3:00:34, 1.03it/s]
491
  2%|▏ | 240/11346 [03:57<3:00:31, 1.03it/s]
492
  2%|▏ | 241/11346 [03:58<3:00:30, 1.03it/s]
493
  2%|▏ | 242/11346 [03:59<3:00:23, 1.03it/s]
494
  2%|▏ | 243/11346 [04:00<3:00:22, 1.03it/s]
495
  2%|▏ | 244/11346 [04:01<3:00:22, 1.03it/s]
496
  2%|▏ | 245/11346 [04:02<3:00:21, 1.03it/s]
497
  2%|▏ | 246/11346 [04:03<3:00:11, 1.03it/s]
498
  2%|▏ | 247/11346 [04:04<3:00:14, 1.03it/s]
499
  2%|▏ | 248/11346 [04:05<3:00:16, 1.03it/s]
500
  2%|▏ | 249/11346 [04:06<3:00:15, 1.03it/s]
501
  2%|▏ | 250/11346 [04:07<3:00:15, 1.03it/s]
502
  2%|▏ | 251/11346 [04:08<3:00:12, 1.03it/s]
503
  2%|▏ | 252/11346 [04:08<3:00:11, 1.03it/s]
504
  2%|▏ | 253/11346 [04:09<3:00:11, 1.03it/s]
505
  2%|▏ | 254/11346 [04:10<3:00:13, 1.03it/s]
506
  2%|▏ | 255/11346 [04:11<3:00:12, 1.03it/s]
507
  2%|▏ | 256/11346 [04:12<3:00:13, 1.03it/s]
508
  2%|▏ | 257/11346 [04:13<3:00:06, 1.03it/s]
509
  2%|▏ | 258/11346 [04:14<3:00:05, 1.03it/s]
510
  2%|▏ | 259/11346 [04:15<3:00:08, 1.03it/s]
511
  2%|▏ | 260/11346 [04:16<3:00:08, 1.03it/s]
512
  2%|▏ | 261/11346 [04:17<3:00:05, 1.03it/s]
513
  2%|▏ | 262/11346 [04:18<3:00:01, 1.03it/s]
514
  2%|▏ | 263/11346 [04:19<3:00:04, 1.03it/s]
515
  2%|▏ | 264/11346 [04:20<3:00:04, 1.03it/s]
516
  2%|▏ | 265/11346 [04:21<3:00:02, 1.03it/s]
517
  2%|▏ | 266/11346 [04:22<3:00:05, 1.03it/s]
518
  2%|▏ | 267/11346 [04:23<3:00:03, 1.03it/s]
519
  2%|▏ | 268/11346 [04:24<2:59:55, 1.03it/s]
520
  2%|▏ | 269/11346 [04:25<2:59:51, 1.03it/s]
521
  2%|▏ | 270/11346 [04:26<2:59:51, 1.03it/s]
522
  2%|▏ | 271/11346 [04:27<2:59:44, 1.03it/s]
523
  2%|▏ | 272/11346 [04:28<2:59:48, 1.03it/s]
524
  2%|▏ | 273/11346 [04:29<2:59:59, 1.03it/s]
525
  2%|▏ | 274/11346 [04:30<3:00:03, 1.02it/s]
526
  2%|▏ | 275/11346 [04:31<2:59:58, 1.03it/s]
527
  2%|▏ | 276/11346 [04:32<3:00:01, 1.02it/s]
528
  2%|▏ | 277/11346 [04:33<3:00:00, 1.02it/s]
529
  2%|▏ | 278/11346 [04:34<2:59:52, 1.03it/s]
530
  2%|▏ | 279/11346 [04:35<2:59:53, 1.03it/s]
531
  2%|▏ | 280/11346 [04:36<2:59:54, 1.03it/s]
532
  2%|▏ | 281/11346 [04:37<2:59:49, 1.03it/s]
533
  2%|▏ | 282/11346 [04:38<2:59:50, 1.03it/s]
534
  2%|▏ | 283/11346 [04:39<2:59:49, 1.03it/s]
535
  3%|▎ | 284/11346 [04:40<2:59:42, 1.03it/s]
536
  3%|▎ | 285/11346 [04:41<2:59:45, 1.03it/s]
537
  3%|▎ | 286/11346 [04:42<2:59:45, 1.03it/s]
538
  3%|▎ | 287/11346 [04:43<2:59:46, 1.03it/s]
539
  3%|▎ | 288/11346 [04:44<2:59:38, 1.03it/s]
540
  3%|▎ | 289/11346 [04:45<2:59:34, 1.03it/s]
541
  3%|▎ | 290/11346 [04:46<2:59:25, 1.03it/s]
542
  3%|▎ | 291/11346 [04:47<2:59:28, 1.03it/s]
543
  3%|▎ | 292/11346 [04:47<2:59:31, 1.03it/s]
544
  3%|▎ | 293/11346 [04:48<2:59:32, 1.03it/s]
545
  3%|▎ | 294/11346 [04:49<2:59:30, 1.03it/s]
546
  3%|▎ | 295/11346 [04:50<2:59:31, 1.03it/s]
547
  3%|▎ | 296/11346 [04:51<2:59:32, 1.03it/s]
548
  3%|▎ | 297/11346 [04:52<2:59:27, 1.03it/s]
549
  3%|▎ | 298/11346 [04:53<2:59:26, 1.03it/s]
550
  3%|▎ | 299/11346 [04:54<2:59:23, 1.03it/s]
551
  3%|▎ | 300/11346 [04:55<2:59:19, 1.03it/s]
552
  3%|▎ | 301/11346 [04:56<2:59:21, 1.03it/s]
553
  3%|▎ | 302/11346 [04:57<2:59:26, 1.03it/s]
554
  3%|▎ | 303/11346 [04:58<2:59:25, 1.03it/s]
555
  3%|▎ | 304/11346 [04:59<2:59:23, 1.03it/s]
556
  3%|▎ | 305/11346 [05:00<2:59:26, 1.03it/s]
557
  3%|▎ | 306/11346 [05:01<2:59:22, 1.03it/s]
558
  3%|▎ | 307/11346 [05:02<2:59:30, 1.02it/s]
559
  3%|▎ | 308/11346 [05:03<2:59:20, 1.03it/s]
560
  3%|▎ | 309/11346 [05:04<2:59:21, 1.03it/s]
561
  3%|▎ | 310/11346 [05:05<2:59:16, 1.03it/s]
562
  3%|▎ | 311/11346 [05:06<2:59:15, 1.03it/s]
563
  3%|▎ | 312/11346 [05:07<2:59:11, 1.03it/s]
564
  3%|▎ | 313/11346 [05:08<2:59:02, 1.03it/s]
565
  3%|▎ | 314/11346 [05:09<2:59:00, 1.03it/s]
566
  3%|▎ | 315/11346 [05:10<2:59:03, 1.03it/s]
567
  3%|▎ | 316/11346 [05:11<2:59:04, 1.03it/s]
568
  3%|▎ | 317/11346 [05:12<2:59:08, 1.03it/s]
569
  3%|▎ | 318/11346 [05:13<2:59:07, 1.03it/s]
570
  3%|▎ | 319/11346 [05:14<2:59:05, 1.03it/s]
571
  3%|▎ | 320/11346 [05:15<2:59:01, 1.03it/s]
572
  3%|▎ | 321/11346 [05:16<2:59:02, 1.03it/s]
573
  3%|▎ | 322/11346 [05:17<2:59:08, 1.03it/s]
574
  3%|▎ | 323/11346 [05:18<2:59:03, 1.03it/s]
575
  3%|▎ | 324/11346 [05:19<2:58:55, 1.03it/s]
576
  3%|▎ | 325/11346 [05:20<2:59:00, 1.03it/s]
577
  3%|▎ | 326/11346 [05:21<2:58:53, 1.03it/s]
578
  3%|▎ | 327/11346 [05:22<2:58:46, 1.03it/s]
579
  3%|▎ | 328/11346 [05:23<2:58:50, 1.03it/s]
580
  3%|▎ | 329/11346 [05:24<2:58:42, 1.03it/s]
581
  3%|▎ | 330/11346 [05:25<2:58:39, 1.03it/s]
582
  3%|▎ | 331/11346 [05:25<2:58:42, 1.03it/s]
583
  3%|▎ | 332/11346 [05:26<2:58:47, 1.03it/s]
584
  3%|▎ | 333/11346 [05:27<2:58:45, 1.03it/s]
585
  3%|▎ | 334/11346 [05:28<2:58:46, 1.03it/s]
586
  3%|▎ | 335/11346 [05:29<2:58:40, 1.03it/s]
587
  3%|▎ | 336/11346 [05:30<2:58:34, 1.03it/s]
588
  3%|▎ | 337/11346 [05:31<2:58:29, 1.03it/s]
589
  3%|▎ | 338/11346 [05:32<2:58:31, 1.03it/s]
590
  3%|▎ | 339/11346 [05:33<2:58:38, 1.03it/s]
591
  3%|▎ | 340/11346 [05:34<2:58:38, 1.03it/s]
592
  3%|▎ | 341/11346 [05:35<2:58:41, 1.03it/s]
593
  3%|▎ | 342/11346 [05:36<2:58:42, 1.03it/s]
594
  3%|▎ | 343/11346 [05:37<2:58:40, 1.03it/s]
595
  3%|▎ | 344/11346 [05:38<2:58:33, 1.03it/s]
596
  3%|▎ | 345/11346 [05:39<2:58:34, 1.03it/s]
597
  3%|▎ | 346/11346 [05:40<2:58:37, 1.03it/s]
598
  3%|▎ | 347/11346 [05:41<2:58:31, 1.03it/s]
599
  3%|▎ | 348/11346 [05:42<2:58:31, 1.03it/s]
600
  3%|▎ | 349/11346 [05:43<2:58:30, 1.03it/s]
601
  3%|▎ | 350/11346 [05:44<2:58:27, 1.03it/s]
602
  3%|▎ | 351/11346 [05:45<2:58:22, 1.03it/s]
603
  3%|▎ | 352/11346 [05:46<2:58:23, 1.03it/s]
604
  3%|▎ | 353/11346 [05:47<2:58:23, 1.03it/s]
605
  3%|▎ | 354/11346 [05:48<2:58:23, 1.03it/s]
606
  3%|▎ | 355/11346 [05:49<2:58:22, 1.03it/s]
607
  3%|▎ | 356/11346 [05:50<2:58:22, 1.03it/s]
608
  3%|▎ | 357/11346 [05:51<2:58:23, 1.03it/s]
609
  3%|▎ | 358/11346 [05:52<2:58:22, 1.03it/s]
610
  3%|▎ | 359/11346 [05:53<2:58:24, 1.03it/s]
611
  3%|▎ | 360/11346 [05:54<2:58:23, 1.03it/s]
612
  3%|▎ | 361/11346 [05:55<2:58:18, 1.03it/s]
613
  3%|▎ | 362/11346 [05:56<2:58:22, 1.03it/s]
614
  3%|▎ | 363/11346 [05:57<2:58:12, 1.03it/s]
615
  3%|▎ | 364/11346 [05:58<2:58:13, 1.03it/s]
616
  3%|▎ | 365/11346 [05:59<2:58:18, 1.03it/s]
617
  3%|▎ | 366/11346 [06:00<2:58:18, 1.03it/s]
618
  3%|▎ | 367/11346 [06:01<2:58:12, 1.03it/s]
619
  3%|▎ | 368/11346 [06:02<2:58:16, 1.03it/s]
620
  3%|▎ | 369/11346 [06:03<2:58:15, 1.03it/s]
621
  3%|▎ | 370/11346 [06:03<2:58:11, 1.03it/s]
622
  3%|▎ | 371/11346 [06:04<2:58:12, 1.03it/s]
623
  3%|▎ | 372/11346 [06:05<2:58:20, 1.03it/s]
624
  3%|▎ | 373/11346 [06:06<2:58:15, 1.03it/s]
625
  3%|▎ | 374/11346 [06:07<2:58:06, 1.03it/s]
626
  3%|▎ | 375/11346 [06:08<2:58:09, 1.03it/s]
627
  3%|▎ | 376/11346 [06:09<2:58:10, 1.03it/s]
628
  3%|▎ | 377/11346 [06:10<2:58:08, 1.03it/s]
629
  3%|▎ | 378/11346 [06:11<2:57:58, 1.03it/s]
630
  3%|▎ | 379/11346 [06:12<2:58:02, 1.03it/s]
631
  3%|▎ | 380/11346 [06:13<2:58:02, 1.03it/s]
632
  3%|▎ | 381/11346 [06:14<2:57:59, 1.03it/s]
633
  3%|▎ | 382/11346 [06:15<2:57:58, 1.03it/s]
634
  3%|▎ | 383/11346 [06:16<2:57:57, 1.03it/s]
635
  3%|▎ | 384/11346 [06:17<2:57:59, 1.03it/s]
636
  3%|▎ | 385/11346 [06:18<2:57:55, 1.03it/s]
637
  3%|▎ | 386/11346 [06:19<2:57:57, 1.03it/s]
638
  3%|▎ | 387/11346 [06:20<2:57:56, 1.03it/s]
639
  3%|▎ | 388/11346 [06:21<2:57:53, 1.03it/s]
640
  3%|▎ | 389/11346 [06:22<2:57:54, 1.03it/s]
641
  3%|▎ | 390/11346 [06:23<2:57:56, 1.03it/s]
642
  3%|▎ | 391/11346 [06:24<2:57:50, 1.03it/s]
643
  3%|▎ | 392/11346 [06:25<2:57:51, 1.03it/s]
644
  3%|▎ | 393/11346 [06:26<2:57:45, 1.03it/s]
645
  3%|▎ | 394/11346 [06:27<2:57:41, 1.03it/s]
646
  3%|▎ | 395/11346 [06:28<2:57:39, 1.03it/s]
647
  3%|▎ | 396/11346 [06:29<2:57:34, 1.03it/s]
648
  3%|▎ | 397/11346 [06:30<2:57:32, 1.03it/s]
649
  4%|▎ | 398/11346 [06:31<2:57:25, 1.03it/s]
650
  4%|▎ | 399/11346 [06:32<2:57:23, 1.03it/s]
651
  4%|▎ | 400/11346 [06:33<2:57:23, 1.03it/s]
652
  4%|▎ | 401/11346 [06:34<2:57:26, 1.03it/s]
653
  4%|▎ | 402/11346 [06:35<2:57:28, 1.03it/s]
654
  4%|▎ | 403/11346 [06:36<2:57:24, 1.03it/s]
655
  4%|▎ | 404/11346 [06:37<2:57:26, 1.03it/s]
656
  4%|▎ | 405/11346 [06:38<2:57:22, 1.03it/s]
657
  4%|▎ | 406/11346 [06:39<2:57:16, 1.03it/s]
658
  4%|▎ | 407/11346 [06:39<2:57:09, 1.03it/s]
659
  4%|▎ | 408/11346 [06:40<2:57:09, 1.03it/s]
660
  4%|▎ | 409/11346 [06:41<2:57:08, 1.03it/s]
661
  4%|▎ | 410/11346 [06:42<2:57:07, 1.03it/s]
662
  4%|▎ | 411/11346 [06:43<2:57:03, 1.03it/s]
663
  4%|▎ | 412/11346 [06:44<2:57:04, 1.03it/s]
664
  4%|▎ | 413/11346 [06:45<2:57:00, 1.03it/s]
665
  4%|▎ | 414/11346 [06:46<2:56:59, 1.03it/s]
666
  4%|▎ | 415/11346 [06:47<2:57:02, 1.03it/s]
667
  4%|▎ | 416/11346 [06:48<2:57:00, 1.03it/s]
668
  4%|▎ | 417/11346 [06:49<2:57:00, 1.03it/s]
669
  4%|▎ | 418/11346 [06:50<2:57:03, 1.03it/s]
670
  4%|▎ | 419/11346 [06:51<2:57:04, 1.03it/s]
671
  4%|▎ | 420/11346 [06:52<2:57:04, 1.03it/s]
672
  4%|▎ | 421/11346 [06:53<2:57:10, 1.03it/s]
673
  4%|▎ | 422/11346 [06:54<2:57:09, 1.03it/s]
674
  4%|▎ | 423/11346 [06:55<2:57:04, 1.03it/s]
675
  4%|▎ | 424/11346 [06:56<2:57:00, 1.03it/s]
676
  4%|▎ | 425/11346 [06:57<2:56:57, 1.03it/s]
677
  4%|▍ | 426/11346 [06:58<2:56:58, 1.03it/s]
678
  4%|▍ | 427/11346 [06:59<2:56:54, 1.03it/s]
679
  4%|▍ | 428/11346 [07:00<2:56:55, 1.03it/s]
680
  4%|▍ | 429/11346 [07:01<2:56:55, 1.03it/s]
681
  4%|▍ | 430/11346 [07:02<2:56:53, 1.03it/s]
682
  4%|▍ | 431/11346 [07:03<2:56:50, 1.03it/s]
683
  4%|▍ | 432/11346 [07:04<2:56:46, 1.03it/s]
684
  4%|▍ | 433/11346 [07:05<2:56:43, 1.03it/s]
685
  4%|▍ | 434/11346 [07:06<2:56:44, 1.03it/s]
686
  4%|▍ | 435/11346 [07:07<2:56:51, 1.03it/s]
687
  4%|▍ | 436/11346 [07:08<2:56:47, 1.03it/s]
688
  4%|▍ | 437/11346 [07:09<2:56:43, 1.03it/s]
689
  4%|▍ | 438/11346 [07:10<2:56:53, 1.03it/s]
690
  4%|▍ | 439/11346 [07:11<2:56:45, 1.03it/s]
691
  4%|▍ | 440/11346 [07:12<2:56:42, 1.03it/s]
692
  4%|▍ | 441/11346 [07:13<2:56:45, 1.03it/s]
693
  4%|▍ | 442/11346 [07:14<2:56:42, 1.03it/s]
694
  4%|▍ | 443/11346 [07:14<2:56:39, 1.03it/s]
695
  4%|▍ | 444/11346 [07:15<2:56:37, 1.03it/s]
696
  4%|▍ | 445/11346 [07:16<2:56:38, 1.03it/s]
697
  4%|▍ | 446/11346 [07:17<2:56:35, 1.03it/s]
698
  4%|▍ | 447/11346 [07:18<2:56:38, 1.03it/s]
699
  4%|▍ | 448/11346 [07:19<2:56:38, 1.03it/s]
700
  4%|▍ | 449/11346 [07:20<2:56:34, 1.03it/s]
701
  4%|▍ | 450/11346 [07:21<2:56:31, 1.03it/s]
702
  4%|▍ | 451/11346 [07:22<2:56:32, 1.03it/s]
703
  4%|▍ | 452/11346 [07:23<2:56:31, 1.03it/s]
704
  4%|▍ | 453/11346 [07:24<2:56:29, 1.03it/s]
705
  4%|▍ | 454/11346 [07:25<2:56:29, 1.03it/s]
706
  4%|▍ | 455/11346 [07:26<2:56:25, 1.03it/s]
707
  4%|▍ | 456/11346 [07:27<2:56:25, 1.03it/s]
708
  4%|▍ | 457/11346 [07:28<2:56:24, 1.03it/s]
709
  4%|▍ | 458/11346 [07:29<2:56:23, 1.03it/s]
710
  4%|▍ | 459/11346 [07:30<2:56:22, 1.03it/s]
711
  4%|▍ | 460/11346 [07:31<2:56:22, 1.03it/s]
712
  4%|▍ | 461/11346 [07:32<2:56:19, 1.03it/s]
713
  4%|▍ | 462/11346 [07:33<2:56:19, 1.03it/s]
714
  4%|▍ | 463/11346 [07:34<2:56:20, 1.03it/s]
715
  4%|▍ | 464/11346 [07:35<2:56:20, 1.03it/s]
716
  4%|▍ | 465/11346 [07:36<2:56:21, 1.03it/s]
717
  4%|▍ | 466/11346 [07:37<2:56:16, 1.03it/s]
718
  4%|▍ | 467/11346 [07:38<2:56:10, 1.03it/s]
719
  4%|▍ | 468/11346 [07:39<2:56:11, 1.03it/s]
720
  4%|▍ | 469/11346 [07:40<2:56:07, 1.03it/s]
721
  4%|▍ | 470/11346 [07:41<2:56:09, 1.03it/s]
722
  4%|▍ | 471/11346 [07:42<2:56:10, 1.03it/s]
723
  4%|▍ | 472/11346 [07:43<2:56:12, 1.03it/s]
724
  4%|▍ | 473/11346 [07:44<2:56:18, 1.03it/s]
725
  4%|▍ | 474/11346 [07:45<2:56:16, 1.03it/s]
726
  4%|▍ | 475/11346 [07:46<2:56:08, 1.03it/s]
727
  4%|▍ | 476/11346 [07:47<2:56:06, 1.03it/s]
728
  4%|▍ | 477/11346 [07:48<2:56:05, 1.03it/s]
729
  4%|▍ | 478/11346 [07:49<2:56:03, 1.03it/s]
730
  4%|▍ | 479/11346 [07:49<2:55:59, 1.03it/s]
731
  4%|▍ | 480/11346 [07:50<2:56:00, 1.03it/s]
732
  4%|▍ | 481/11346 [07:51<2:55:59, 1.03it/s]
733
  4%|▍ | 482/11346 [07:52<2:55:57, 1.03it/s]
734
  4%|▍ | 483/11346 [07:53<2:55:58, 1.03it/s]
735
  4%|▍ | 484/11346 [07:54<2:55:55, 1.03it/s]
736
  4%|▍ | 485/11346 [07:55<2:55:58, 1.03it/s]
737
  4%|▍ | 486/11346 [07:56<2:55:56, 1.03it/s]
738
  4%|▍ | 487/11346 [07:57<2:55:50, 1.03it/s]
739
  4%|▍ | 488/11346 [07:58<2:55:48, 1.03it/s]
740
  4%|▍ | 489/11346 [07:59<2:55:47, 1.03it/s]
741
  4%|▍ | 490/11346 [08:00<2:55:48, 1.03it/s]
742
  4%|▍ | 491/11346 [08:01<2:55:51, 1.03it/s]
743
  4%|▍ | 492/11346 [08:02<2:55:51, 1.03it/s]
744
  4%|▍ | 493/11346 [08:03<2:55:48, 1.03it/s]
745
  4%|▍ | 494/11346 [08:04<2:55:50, 1.03it/s]
746
  4%|▍ | 495/11346 [08:05<2:55:51, 1.03it/s]
747
  4%|▍ | 496/11346 [08:06<2:55:49, 1.03it/s]
748
  4%|▍ | 497/11346 [08:07<2:55:49, 1.03it/s]
749
  4%|▍ | 498/11346 [08:08<2:55:44, 1.03it/s]
750
  4%|▍ | 499/11346 [08:09<2:55:43, 1.03it/s]
751
  4%|▍ | 500/11346 [08:10<2:55:42, 1.03it/s]
752
 
753
  4%|▍ | 500/11346 [08:10<2:55:42, 1.03it/s]
754
  4%|▍ | 501/11346 [08:11<2:55:54, 1.03it/s]
755
  4%|▍ | 502/11346 [08:12<2:55:53, 1.03it/s]
756
  4%|▍ | 503/11346 [08:13<2:55:51, 1.03it/s]
757
  4%|▍ | 504/11346 [08:14<2:55:43, 1.03it/s]
758
  4%|▍ | 505/11346 [08:15<2:55:43, 1.03it/s]
759
  4%|▍ | 506/11346 [08:16<2:55:40, 1.03it/s]
760
  4%|▍ | 507/11346 [08:17<2:55:35, 1.03it/s]
761
  4%|▍ | 508/11346 [08:18<2:55:34, 1.03it/s]
762
  4%|▍ | 509/11346 [08:19<2:55:35, 1.03it/s]
763
  4%|▍ | 510/11346 [08:20<2:55:32, 1.03it/s]
764
  5%|▍ | 511/11346 [08:21<2:55:29, 1.03it/s]
765
  5%|▍ | 512/11346 [08:22<2:55:32, 1.03it/s]
766
  5%|▍ | 513/11346 [08:23<2:55:28, 1.03it/s]
767
  5%|▍ | 514/11346 [08:24<2:55:27, 1.03it/s]
768
  5%|▍ | 515/11346 [08:24<2:55:28, 1.03it/s]
769
  5%|▍ | 516/11346 [08:25<2:55:36, 1.03it/s]
770
  5%|▍ | 517/11346 [08:26<2:55:34, 1.03it/s]
771
  5%|▍ | 518/11346 [08:27<2:55:29, 1.03it/s]
772
  5%|▍ | 519/11346 [08:28<2:55:30, 1.03it/s]
773
  5%|▍ | 520/11346 [08:29<2:55:30, 1.03it/s]
774
  5%|▍ | 521/11346 [08:30<2:55:31, 1.03it/s]
775
  5%|▍ | 522/11346 [08:31<2:55:30, 1.03it/s]
776
  5%|▍ | 523/11346 [08:32<2:55:32, 1.03it/s]
777
  5%|▍ | 524/11346 [08:33<2:55:27, 1.03it/s]
778
  5%|▍ | 525/11346 [08:34<2:55:25, 1.03it/s]
779
  5%|▍ | 526/11346 [08:35<2:55:29, 1.03it/s]
780
  5%|▍ | 527/11346 [08:36<2:55:25, 1.03it/s]
781
  5%|▍ | 528/11346 [08:37<2:55:19, 1.03it/s]
782
  5%|▍ | 529/11346 [08:38<2:55:22, 1.03it/s]
783
  5%|▍ | 530/11346 [08:39<2:55:23, 1.03it/s]
784
  5%|▍ | 531/11346 [08:40<2:55:20, 1.03it/s]
785
  5%|▍ | 532/11346 [08:41<2:55:13, 1.03it/s]
786
  5%|▍ | 533/11346 [08:42<2:55:13, 1.03it/s]
787
  5%|▍ | 534/11346 [08:43<2:55:10, 1.03it/s]
788
  5%|▍ | 535/11346 [08:44<2:55:10, 1.03it/s]
789
  5%|▍ | 536/11346 [08:45<2:55:09, 1.03it/s]
790
  5%|▍ | 537/11346 [08:46<2:55:11, 1.03it/s]
791
  5%|▍ | 538/11346 [08:47<2:55:07, 1.03it/s]
792
  5%|▍ | 539/11346 [08:48<2:55:08, 1.03it/s]
793
  5%|▍ | 540/11346 [08:49<2:55:08, 1.03it/s]
794
  5%|▍ | 541/11346 [08:50<2:55:11, 1.03it/s]
795
  5%|▍ | 542/11346 [08:51<2:55:07, 1.03it/s]
796
  5%|▍ | 543/11346 [08:52<2:55:04, 1.03it/s]
797
  5%|▍ | 544/11346 [08:53<2:55:06, 1.03it/s]
798
  5%|▍ | 545/11346 [08:54<2:55:03, 1.03it/s]
799
  5%|▍ | 546/11346 [08:55<2:55:00, 1.03it/s]
800
  5%|▍ | 547/11346 [08:56<2:54:58, 1.03it/s]
801
  5%|▍ | 548/11346 [08:57<2:54:57, 1.03it/s]
802
  5%|▍ | 549/11346 [08:58<2:54:57, 1.03it/s]
803
  5%|▍ | 550/11346 [08:59<2:54:58, 1.03it/s]
804
  5%|▍ | 551/11346 [08:59<2:54:53, 1.03it/s]
805
  5%|▍ | 552/11346 [09:00<2:54:50, 1.03it/s]
806
  5%|▍ | 553/11346 [09:01<2:54:48, 1.03it/s]
807
  5%|▍ | 554/11346 [09:02<2:54:51, 1.03it/s]
808
  5%|▍ | 555/11346 [09:03<2:54:53, 1.03it/s]
809
  5%|▍ | 556/11346 [09:04<2:54:48, 1.03it/s]
810
  5%|▍ | 557/11346 [09:05<2:54:44, 1.03it/s]
811
  5%|▍ | 558/11346 [09:06<2:54:55, 1.03it/s]
812
  5%|▍ | 559/11346 [09:07<2:54:51, 1.03it/s]
813
  5%|▍ | 560/11346 [09:08<2:54:48, 1.03it/s]
814
  5%|▍ | 561/11346 [09:09<2:54:47, 1.03it/s]
815
  5%|▍ | 562/11346 [09:10<2:54:45, 1.03it/s]
816
  5%|▍ | 563/11346 [09:11<2:54:42, 1.03it/s]
817
  5%|▍ | 564/11346 [09:12<2:54:41, 1.03it/s]
818
  5%|▍ | 565/11346 [09:13<2:54:45, 1.03it/s]
819
  5%|▍ | 566/11346 [09:14<2:54:41, 1.03it/s]
820
  5%|▍ | 567/11346 [09:15<2:54:43, 1.03it/s]
821
  5%|▌ | 568/11346 [09:16<2:54:40, 1.03it/s]
822
  5%|▌ | 569/11346 [09:17<2:54:35, 1.03it/s]
823
  5%|▌ | 570/11346 [09:18<2:54:32, 1.03it/s]
824
  5%|▌ | 571/11346 [09:19<2:54:34, 1.03it/s]
825
  5%|▌ | 572/11346 [09:20<2:54:32, 1.03it/s]
826
  5%|▌ | 573/11346 [09:21<2:54:33, 1.03it/s]
827
  5%|▌ | 574/11346 [09:22<2:54:33, 1.03it/s]
828
  5%|▌ | 575/11346 [09:23<2:54:29, 1.03it/s]
829
  5%|▌ | 576/11346 [09:24<2:54:28, 1.03it/s]
830
  5%|▌ | 577/11346 [09:25<2:54:25, 1.03it/s]
831
  5%|▌ | 578/11346 [09:26<2:54:24, 1.03it/s]
832
  5%|▌ | 579/11346 [09:27<2:54:27, 1.03it/s]
833
  5%|▌ | 580/11346 [09:28<2:54:25, 1.03it/s]
834
  5%|▌ | 581/11346 [09:29<2:54:21, 1.03it/s]
835
  5%|▌ | 582/11346 [09:30<2:54:26, 1.03it/s]
836
  5%|▌ | 583/11346 [09:31<2:54:24, 1.03it/s]
837
  5%|▌ | 584/11346 [09:32<2:54:22, 1.03it/s]
838
  5%|▌ | 585/11346 [09:33<2:54:21, 1.03it/s]
839
  5%|▌ | 586/11346 [09:34<2:54:17, 1.03it/s]
840
  5%|▌ | 587/11346 [09:34<2:54:17, 1.03it/s]
841
  5%|▌ | 588/11346 [09:35<2:54:13, 1.03it/s]
842
  5%|▌ | 589/11346 [09:36<2:54:18, 1.03it/s]
843
  5%|▌ | 590/11346 [09:37<2:54:15, 1.03it/s]
844
  5%|▌ | 591/11346 [09:38<2:54:09, 1.03it/s]
845
  5%|▌ | 592/11346 [09:39<2:54:09, 1.03it/s]
846
  5%|▌ | 593/11346 [09:40<2:54:13, 1.03it/s]
847
  5%|▌ | 594/11346 [09:41<2:54:12, 1.03it/s]
848
  5%|▌ | 595/11346 [09:42<2:54:13, 1.03it/s]
849
  5%|▌ | 596/11346 [09:43<2:54:10, 1.03it/s]
850
  5%|▌ | 597/11346 [09:44<2:54:09, 1.03it/s]
851
  5%|▌ | 598/11346 [09:45<2:54:06, 1.03it/s]
852
  5%|▌ | 599/11346 [09:46<2:54:12, 1.03it/s]
853
  5%|▌ | 600/11346 [09:47<2:54:08, 1.03it/s]
854
  5%|▌ | 601/11346 [09:48<2:54:08, 1.03it/s]
855
  5%|▌ | 602/11346 [09:49<2:54:07, 1.03it/s]
856
  5%|▌ | 603/11346 [09:50<2:54:12, 1.03it/s]
857
  5%|▌ | 604/11346 [09:51<2:54:10, 1.03it/s]
858
  5%|▌ | 605/11346 [09:52<2:54:10, 1.03it/s]
859
  5%|▌ | 606/11346 [09:53<2:54:09, 1.03it/s]
860
  5%|▌ | 607/11346 [09:54<2:54:06, 1.03it/s]
861
  5%|▌ | 608/11346 [09:55<2:54:06, 1.03it/s]
862
  5%|▌ | 609/11346 [09:56<2:54:06, 1.03it/s]
863
  5%|▌ | 610/11346 [09:57<2:54:03, 1.03it/s]
864
  5%|▌ | 611/11346 [09:58<2:54:02, 1.03it/s]
865
  5%|▌ | 612/11346 [09:59<2:54:01, 1.03it/s]
866
  5%|▌ | 613/11346 [10:00<2:53:56, 1.03it/s]
867
  5%|▌ | 614/11346 [10:01<2:53:56, 1.03it/s]
868
  5%|▌ | 615/11346 [10:02<2:53:53, 1.03it/s]
869
  5%|▌ | 616/11346 [10:03<2:53:48, 1.03it/s]
870
  5%|▌ | 617/11346 [10:04<2:53:48, 1.03it/s]
871
  5%|▌ | 618/11346 [10:05<2:53:46, 1.03it/s]
872
  5%|▌ | 619/11346 [10:06<2:53:50, 1.03it/s]
873
  5%|▌ | 620/11346 [10:07<2:53:49, 1.03it/s]
874
  5%|▌ | 621/11346 [10:08<2:53:50, 1.03it/s]
875
  5%|▌ | 622/11346 [10:09<2:53:46, 1.03it/s]
876
  5%|▌ | 623/11346 [10:09<2:53:45, 1.03it/s]
877
  5%|▌ | 624/11346 [10:10<2:53:45, 1.03it/s]
878
  6%|▌ | 625/11346 [10:11<2:53:48, 1.03it/s]
879
  6%|▌ | 626/11346 [10:12<2:53:47, 1.03it/s]
880
  6%|▌ | 627/11346 [10:13<2:53:42, 1.03it/s]
881
  6%|▌ | 628/11346 [10:14<2:53:45, 1.03it/s]
882
  6%|▌ | 629/11346 [10:15<2:53:41, 1.03it/s]
883
  6%|▌ | 630/11346 [10:16<2:53:39, 1.03it/s]
884
  6%|▌ | 631/11346 [10:17<2:53:36, 1.03it/s]
885
  6%|▌ | 632/11346 [10:18<2:53:35, 1.03it/s]
886
  6%|▌ | 633/11346 [10:19<2:53:36, 1.03it/s]
887
  6%|▌ | 634/11346 [10:20<2:53:35, 1.03it/s]
888
  6%|▌ | 635/11346 [10:21<2:53:34, 1.03it/s]
889
  6%|▌ | 636/11346 [10:22<2:53:36, 1.03it/s]
890
  6%|▌ | 637/11346 [10:23<2:53:29, 1.03it/s]
891
  6%|▌ | 638/11346 [10:24<2:53:28, 1.03it/s]
892
  6%|▌ | 639/11346 [10:25<2:53:30, 1.03it/s]
893
  6%|▌ | 640/11346 [10:26<2:53:28, 1.03it/s]
894
  6%|▌ | 641/11346 [10:27<2:53:28, 1.03it/s]
895
  6%|▌ | 642/11346 [10:28<2:53:24, 1.03it/s]
896
  6%|▌ | 643/11346 [10:29<2:53:26, 1.03it/s]
897
  6%|▌ | 644/11346 [10:30<2:53:27, 1.03it/s]
898
  6%|▌ | 645/11346 [10:31<2:53:27, 1.03it/s]
899
  6%|▌ | 646/11346 [10:32<2:53:26, 1.03it/s]
900
  6%|▌ | 647/11346 [10:33<2:53:26, 1.03it/s]
901
  6%|▌ | 648/11346 [10:34<2:53:25, 1.03it/s]
902
  6%|▌ | 649/11346 [10:35<2:53:23, 1.03it/s]
903
  6%|▌ | 650/11346 [10:36<2:53:19, 1.03it/s]
904
  6%|▌ | 651/11346 [10:37<2:53:19, 1.03it/s]
905
  6%|▌ | 652/11346 [10:38<2:53:27, 1.03it/s]
906
  6%|▌ | 653/11346 [10:39<2:53:24, 1.03it/s]
907
  6%|▌ | 654/11346 [10:40<2:53:21, 1.03it/s]
908
  6%|▌ | 655/11346 [10:41<2:53:29, 1.03it/s]
909
  6%|▌ | 656/11346 [10:42<2:53:21, 1.03it/s]
910
  6%|▌ | 657/11346 [10:43<2:53:16, 1.03it/s]
911
  6%|▌ | 658/11346 [10:44<2:53:16, 1.03it/s]
912
  6%|▌ | 659/11346 [10:45<2:53:17, 1.03it/s]
913
  6%|▌ | 660/11346 [10:45<2:53:15, 1.03it/s]
914
  6%|▌ | 661/11346 [10:46<2:53:14, 1.03it/s]
915
  6%|▌ | 662/11346 [10:47<2:53:15, 1.03it/s]
916
  6%|▌ | 663/11346 [10:48<2:53:12, 1.03it/s]
917
  6%|▌ | 664/11346 [10:49<2:53:10, 1.03it/s]
918
  6%|▌ | 665/11346 [10:50<2:53:03, 1.03it/s]
919
  6%|▌ | 666/11346 [10:51<2:53:05, 1.03it/s]
920
  6%|▌ | 667/11346 [10:52<2:53:08, 1.03it/s]
921
  6%|▌ | 668/11346 [10:53<2:53:06, 1.03it/s]
922
  6%|▌ | 669/11346 [10:54<2:53:03, 1.03it/s]
923
  6%|▌ | 670/11346 [10:55<2:52:58, 1.03it/s]
924
  6%|▌ | 671/11346 [10:56<2:53:01, 1.03it/s]
925
  6%|▌ | 672/11346 [10:57<2:53:05, 1.03it/s]
926
  6%|▌ | 673/11346 [10:58<2:53:06, 1.03it/s]
927
  6%|▌ | 674/11346 [10:59<2:53:06, 1.03it/s]
928
  6%|▌ | 675/11346 [11:00<2:52:57, 1.03it/s]
929
  6%|▌ | 676/11346 [11:01<2:53:00, 1.03it/s]
930
  6%|▌ | 677/11346 [11:02<2:52:58, 1.03it/s]
931
  6%|▌ | 678/11346 [11:03<2:52:58, 1.03it/s]
932
  6%|▌ | 679/11346 [11:04<2:52:51, 1.03it/s]
933
  6%|▌ | 680/11346 [11:05<2:52:48, 1.03it/s]
934
  6%|▌ | 681/11346 [11:06<2:52:44, 1.03it/s]
935
  6%|▌ | 682/11346 [11:07<2:52:45, 1.03it/s]
936
  6%|▌ | 683/11346 [11:08<2:52:45, 1.03it/s]
937
  6%|▌ | 684/11346 [11:09<2:52:44, 1.03it/s]
938
  6%|▌ | 685/11346 [11:10<2:52:48, 1.03it/s]
939
  6%|▌ | 686/11346 [11:11<2:52:43, 1.03it/s]
940
  6%|▌ | 687/11346 [11:12<2:52:38, 1.03it/s]
941
  6%|▌ | 688/11346 [11:13<2:52:38, 1.03it/s]
942
  6%|▌ | 689/11346 [11:14<2:52:39, 1.03it/s]
943
  6%|▌ | 690/11346 [11:15<2:52:38, 1.03it/s]
944
  6%|▌ | 691/11346 [11:16<2:52:46, 1.03it/s]
945
  6%|▌ | 692/11346 [11:17<2:52:42, 1.03it/s]
946
  6%|▌ | 693/11346 [11:18<2:52:41, 1.03it/s]
947
  6%|▌ | 694/11346 [11:19<2:52:39, 1.03it/s]
948
  6%|▌ | 695/11346 [11:20<2:52:39, 1.03it/s]
949
  6%|▌ | 696/11346 [11:20<2:52:35, 1.03it/s]
950
  6%|▌ | 697/11346 [11:21<2:52:37, 1.03it/s]
951
  6%|▌ | 698/11346 [11:22<2:52:38, 1.03it/s]
952
  6%|▌ | 699/11346 [11:23<2:52:33, 1.03it/s]
953
  6%|▌ | 700/11346 [11:24<2:52:31, 1.03it/s]
954
  6%|▌ | 701/11346 [11:25<2:52:29, 1.03it/s]
955
  6%|▌ | 702/11346 [11:26<2:52:29, 1.03it/s]
956
  6%|▌ | 703/11346 [11:27<2:52:29, 1.03it/s]
957
  6%|▌ | 704/11346 [11:28<2:52:26, 1.03it/s]
958
  6%|▌ | 705/11346 [11:29<2:52:21, 1.03it/s]
959
  6%|▌ | 706/11346 [11:30<2:52:24, 1.03it/s]
960
  6%|▌ | 707/11346 [11:31<2:52:20, 1.03it/s]
961
  6%|▌ | 708/11346 [11:32<2:52:20, 1.03it/s]
962
  6%|▌ | 709/11346 [11:33<2:52:20, 1.03it/s]
963
  6%|▋ | 710/11346 [11:34<2:52:20, 1.03it/s]
964
  6%|▋ | 711/11346 [11:35<2:52:18, 1.03it/s]
965
  6%|▋ | 712/11346 [11:36<2:52:15, 1.03it/s]
966
  6%|▋ | 713/11346 [11:37<2:52:13, 1.03it/s]
967
  6%|▋ | 714/11346 [11:38<2:52:13, 1.03it/s]
968
  6%|▋ | 715/11346 [11:39<2:52:13, 1.03it/s]
969
  6%|▋ | 716/11346 [11:40<2:52:14, 1.03it/s]
970
  6%|▋ | 717/11346 [11:41<2:52:14, 1.03it/s]
971
  6%|▋ | 718/11346 [11:42<2:52:13, 1.03it/s]
972
  6%|▋ | 719/11346 [11:43<2:52:08, 1.03it/s]
973
  6%|▋ | 720/11346 [11:44<2:52:05, 1.03it/s]
974
  6%|▋ | 721/11346 [11:45<2:52:00, 1.03it/s]
975
  6%|▋ | 722/11346 [11:46<2:52:01, 1.03it/s]
976
  6%|▋ | 723/11346 [11:47<2:52:05, 1.03it/s]
977
  6%|▋ | 724/11346 [11:48<2:52:05, 1.03it/s]
978
  6%|▋ | 725/11346 [11:49<2:52:02, 1.03it/s]
979
  6%|▋ | 726/11346 [11:50<2:52:06, 1.03it/s]
980
  6%|▋ | 727/11346 [11:51<2:52:06, 1.03it/s]
981
  6%|▋ | 728/11346 [11:52<2:52:02, 1.03it/s]
982
  6%|▋ | 729/11346 [11:53<2:52:02, 1.03it/s]
983
  6%|▋ | 730/11346 [11:54<2:52:03, 1.03it/s]
984
  6%|▋ | 731/11346 [11:55<2:52:02, 1.03it/s]
985
  6%|▋ | 732/11346 [11:55<2:52:00, 1.03it/s]
986
  6%|▋ | 733/11346 [11:56<2:52:01, 1.03it/s]
987
  6%|▋ | 734/11346 [11:57<2:51:58, 1.03it/s]
988
  6%|▋ | 735/11346 [11:58<2:52:00, 1.03it/s]
989
  6%|▋ | 736/11346 [11:59<2:51:54, 1.03it/s]
990
  6%|▋ | 737/11346 [12:00<2:51:58, 1.03it/s]
991
  7%|▋ | 738/11346 [12:01<2:51:58, 1.03it/s]
992
  7%|▋ | 739/11346 [12:02<2:51:56, 1.03it/s]
993
  7%|▋ | 740/11346 [12:03<2:51:52, 1.03it/s]
994
  7%|▋ | 741/11346 [12:04<2:52:01, 1.03it/s]
995
  7%|▋ | 742/11346 [12:05<2:51:56, 1.03it/s]
996
  7%|▋ | 743/11346 [12:06<2:51:52, 1.03it/s]
997
  7%|▋ | 744/11346 [12:07<2:51:49, 1.03it/s]
998
  7%|▋ | 745/11346 [12:08<2:51:51, 1.03it/s]
999
  7%|▋ | 746/11346 [12:09<2:51:55, 1.03it/s]
1000
  7%|▋ | 747/11346 [12:10<2:51:54, 1.03it/s]
1001
  7%|▋ | 748/11346 [12:11<3:04:33, 1.04s/it]
1002
  7%|▋ | 749/11346 [12:12<3:00:39, 1.02s/it]
1003
  7%|▋ | 750/11346 [12:13<2:57:52, 1.01s/it]
1004
  7%|▋ | 751/11346 [12:14<2:56:02, 1.00it/s]
1005
  7%|▋ | 752/11346 [12:15<2:54:40, 1.01it/s]
1006
  7%|▋ | 753/11346 [12:16<2:53:46, 1.02it/s]
1007
  7%|▋ | 754/11346 [12:17<2:53:09, 1.02it/s]
1008
  7%|▋ | 755/11346 [12:18<2:52:43, 1.02it/s]
1009
  7%|▋ | 756/11346 [12:19<2:52:19, 1.02it/s]
1010
  7%|▋ | 757/11346 [12:20<2:52:06, 1.03it/s]
1011
  7%|▋ | 758/11346 [12:21<2:51:53, 1.03it/s]
1012
  7%|▋ | 759/11346 [12:22<2:51:44, 1.03it/s]
1013
  7%|▋ | 760/11346 [12:23<2:51:40, 1.03it/s]
1014
  7%|▋ | 761/11346 [12:24<2:51:34, 1.03it/s]
1015
  7%|▋ | 762/11346 [12:25<2:51:31, 1.03it/s]
1016
  7%|▋ | 763/11346 [12:26<2:51:28, 1.03it/s]
1017
  7%|▋ | 764/11346 [12:27<2:51:28, 1.03it/s]
1018
  7%|▋ | 765/11346 [12:28<2:51:27, 1.03it/s]
1019
  7%|▋ | 766/11346 [12:29<2:51:20, 1.03it/s]
1020
  7%|▋ | 767/11346 [12:30<2:51:18, 1.03it/s]
1021
  7%|▋ | 768/11346 [12:31<2:51:19, 1.03it/s]
1022
  7%|▋ | 769/11346 [12:32<2:51:21, 1.03it/s]
1023
  7%|▋ | 770/11346 [12:33<2:51:22, 1.03it/s]
1024
  7%|▋ | 771/11346 [12:34<2:51:17, 1.03it/s]
1025
  7%|▋ | 772/11346 [12:35<2:51:17, 1.03it/s]
1026
  7%|▋ | 773/11346 [12:36<2:51:16, 1.03it/s]
1027
  7%|▋ | 774/11346 [12:37<2:51:12, 1.03it/s]
1028
  7%|▋ | 775/11346 [12:38<2:51:12, 1.03it/s]
1029
  7%|▋ | 776/11346 [12:39<2:51:08, 1.03it/s]
1030
  7%|▋ | 777/11346 [12:39<2:51:11, 1.03it/s]
1031
  7%|▋ | 778/11346 [12:40<2:51:10, 1.03it/s]
1032
  7%|▋ | 779/11346 [12:41<2:51:10, 1.03it/s]
1033
  7%|▋ | 780/11346 [12:42<2:51:08, 1.03it/s]
1034
  7%|▋ | 781/11346 [12:43<2:51:05, 1.03it/s]
1035
  7%|▋ | 782/11346 [12:44<2:51:02, 1.03it/s]
1036
  7%|▋ | 783/11346 [12:45<2:51:01, 1.03it/s]
1037
  7%|▋ | 784/11346 [12:46<2:51:02, 1.03it/s]
1038
  7%|▋ | 785/11346 [12:47<2:51:05, 1.03it/s]
1039
  7%|▋ | 786/11346 [12:48<2:51:04, 1.03it/s]
1040
  7%|▋ | 787/11346 [12:49<2:51:02, 1.03it/s]
1041
  7%|▋ | 788/11346 [12:50<2:51:02, 1.03it/s]
1042
  7%|▋ | 789/11346 [12:51<2:51:01, 1.03it/s]
1043
  7%|▋ | 790/11346 [12:52<2:50:58, 1.03it/s]
1044
  7%|▋ | 791/11346 [12:53<2:51:00, 1.03it/s]
1045
  7%|▋ | 792/11346 [12:54<2:50:56, 1.03it/s]
1046
  7%|▋ | 793/11346 [12:55<2:50:56, 1.03it/s]
1047
  7%|▋ | 794/11346 [12:56<2:50:57, 1.03it/s]
1048
  7%|▋ | 795/11346 [12:57<2:50:53, 1.03it/s]
1049
  7%|▋ | 796/11346 [12:58<2:50:54, 1.03it/s]
1050
  7%|▋ | 797/11346 [12:59<2:50:55, 1.03it/s]
1051
  7%|▋ | 798/11346 [13:00<2:50:59, 1.03it/s]
1052
  7%|▋ | 799/11346 [13:01<2:50:54, 1.03it/s]
1053
  7%|▋ | 800/11346 [13:02<2:50:47, 1.03it/s]
1054
  7%|▋ | 801/11346 [13:03<2:50:48, 1.03it/s]
1055
  7%|▋ | 802/11346 [13:04<2:50:51, 1.03it/s]
1056
  7%|▋ | 803/11346 [13:05<2:50:51, 1.03it/s]
1057
  7%|▋ | 804/11346 [13:06<2:50:50, 1.03it/s]
1058
  7%|▋ | 805/11346 [13:07<2:50:49, 1.03it/s]
1059
  7%|▋ | 806/11346 [13:08<2:50:47, 1.03it/s]
1060
  7%|▋ | 807/11346 [13:09<2:50:44, 1.03it/s]
1061
  7%|▋ | 808/11346 [13:10<2:50:40, 1.03it/s]
1062
  7%|▋ | 809/11346 [13:11<2:50:35, 1.03it/s]
1063
  7%|▋ | 810/11346 [13:12<2:50:41, 1.03it/s]
1064
  7%|▋ | 811/11346 [13:13<2:50:39, 1.03it/s]
1065
  7%|▋ | 812/11346 [13:13<2:50:37, 1.03it/s]
1066
  7%|▋ | 813/11346 [13:14<2:50:35, 1.03it/s]
1067
  7%|▋ | 814/11346 [13:15<2:50:35, 1.03it/s]
1068
  7%|▋ | 815/11346 [13:16<2:50:42, 1.03it/s]
1069
  7%|▋ | 816/11346 [13:17<2:50:37, 1.03it/s]
1070
  7%|▋ | 817/11346 [13:18<2:50:36, 1.03it/s]
1071
  7%|▋ | 818/11346 [13:19<2:50:35, 1.03it/s]
1072
  7%|▋ | 819/11346 [13:20<2:50:33, 1.03it/s]
1073
  7%|▋ | 820/11346 [13:21<2:50:35, 1.03it/s]
1074
  7%|▋ | 821/11346 [13:22<2:50:38, 1.03it/s]
1075
  7%|▋ | 822/11346 [13:23<2:50:32, 1.03it/s]
1076
  7%|▋ | 823/11346 [13:24<2:50:27, 1.03it/s]
1077
  7%|▋ | 824/11346 [13:25<2:50:24, 1.03it/s]
1078
  7%|▋ | 825/11346 [13:26<2:50:27, 1.03it/s]
1079
  7%|▋ | 826/11346 [13:27<2:50:27, 1.03it/s]
1080
  7%|▋ | 827/11346 [13:28<2:50:26, 1.03it/s]
1081
  7%|▋ | 828/11346 [13:29<2:50:33, 1.03it/s]
1082
  7%|▋ | 829/11346 [13:30<2:50:29, 1.03it/s]
1083
  7%|▋ | 830/11346 [13:31<2:50:24, 1.03it/s]
1084
  7%|▋ | 831/11346 [13:32<2:50:23, 1.03it/s]
1085
  7%|▋ | 832/11346 [13:33<2:50:24, 1.03it/s]
1086
  7%|▋ | 833/11346 [13:34<2:50:20, 1.03it/s]
1087
  7%|▋ | 834/11346 [13:35<2:50:16, 1.03it/s]
1088
  7%|▋ | 835/11346 [13:36<2:50:12, 1.03it/s]
1089
  7%|▋ | 836/11346 [13:37<2:50:16, 1.03it/s]
1090
  7%|▋ | 837/11346 [13:38<2:50:17, 1.03it/s]
1091
  7%|▋ | 838/11346 [13:39<2:50:15, 1.03it/s]
1092
  7%|▋ | 839/11346 [13:40<2:50:13, 1.03it/s]
1093
  7%|▋ | 840/11346 [13:41<2:50:10, 1.03it/s]
1094
  7%|▋ | 841/11346 [13:42<2:50:10, 1.03it/s]
1095
  7%|▋ | 842/11346 [13:43<2:50:10, 1.03it/s]
1096
  7%|▋ | 843/11346 [13:44<2:50:07, 1.03it/s]
1097
  7%|▋ | 844/11346 [13:45<2:50:02, 1.03it/s]
1098
  7%|▋ | 845/11346 [13:46<2:49:58, 1.03it/s]
1099
  7%|▋ | 846/11346 [13:47<2:50:00, 1.03it/s]
1100
  7%|▋ | 847/11346 [13:48<2:50:03, 1.03it/s]
1101
  7%|▋ | 848/11346 [13:48<2:50:03, 1.03it/s]
1102
  7%|▋ | 849/11346 [13:49<2:50:05, 1.03it/s]
1103
  7%|▋ | 850/11346 [13:50<2:50:01, 1.03it/s]
1104
  8%|▊ | 851/11346 [13:51<2:50:09, 1.03it/s]
1105
  8%|▊ | 852/11346 [13:52<2:50:04, 1.03it/s]
1106
  8%|▊ | 853/11346 [13:53<2:50:03, 1.03it/s]
1107
  8%|▊ | 854/11346 [13:54<2:50:04, 1.03it/s]
1108
  8%|▊ | 855/11346 [13:55<2:50:01, 1.03it/s]
1109
  8%|▊ | 856/11346 [13:56<2:49:57, 1.03it/s]
1110
  8%|▊ | 857/11346 [13:57<2:49:57, 1.03it/s]
1111
  8%|▊ | 858/11346 [13:58<2:49:55, 1.03it/s]
1112
  8%|▊ | 859/11346 [13:59<2:49:52, 1.03it/s]
1113
  8%|▊ | 860/11346 [14:00<2:49:51, 1.03it/s]
1114
  8%|▊ | 861/11346 [14:01<2:49:48, 1.03it/s]
1115
  8%|▊ | 862/11346 [14:02<2:49:46, 1.03it/s]
1116
  8%|▊ | 863/11346 [14:03<2:49:45, 1.03it/s]
1117
  8%|▊ | 864/11346 [14:04<2:49:47, 1.03it/s]
1118
  8%|▊ | 865/11346 [14:05<2:49:48, 1.03it/s]
1119
  8%|▊ | 866/11346 [14:06<2:49:48, 1.03it/s]
1120
  8%|▊ | 867/11346 [14:07<2:49:48, 1.03it/s]
1121
  8%|▊ | 868/11346 [14:08<2:49:51, 1.03it/s]
1122
  8%|▊ | 869/11346 [14:09<2:49:48, 1.03it/s]
1123
  8%|▊ | 870/11346 [14:10<2:49:48, 1.03it/s]
1124
  8%|▊ | 871/11346 [14:11<2:49:43, 1.03it/s]
1125
  8%|▊ | 872/11346 [14:12<2:49:38, 1.03it/s]
1126
  8%|▊ | 873/11346 [14:13<2:49:38, 1.03it/s]
1127
  8%|▊ | 874/11346 [14:14<2:49:41, 1.03it/s]
1128
  8%|▊ | 875/11346 [14:15<2:49:38, 1.03it/s]
1129
  8%|▊ | 876/11346 [14:16<2:49:35, 1.03it/s]
1130
  8%|▊ | 877/11346 [14:17<2:49:34, 1.03it/s]
1131
  8%|▊ | 878/11346 [14:18<2:49:31, 1.03it/s]
1132
  8%|▊ | 879/11346 [14:19<2:49:34, 1.03it/s]
1133
  8%|▊ | 880/11346 [14:20<2:49:32, 1.03it/s]
1134
  8%|▊ | 881/11346 [14:21<2:49:32, 1.03it/s]
1135
  8%|▊ | 882/11346 [14:22<2:49:39, 1.03it/s]
1136
  8%|▊ | 883/11346 [14:23<2:49:32, 1.03it/s]
1137
  8%|▊ | 884/11346 [14:23<2:49:25, 1.03it/s]
1138
  8%|▊ | 885/11346 [14:24<2:49:24, 1.03it/s]
1139
  8%|▊ | 886/11346 [14:25<2:49:23, 1.03it/s]
1140
  8%|▊ | 887/11346 [14:26<2:49:24, 1.03it/s]
1141
  8%|▊ | 888/11346 [14:27<2:49:25, 1.03it/s]
1142
  8%|▊ | 889/11346 [14:28<2:49:21, 1.03it/s]
1143
  8%|▊ | 890/11346 [14:29<2:49:17, 1.03it/s]
1144
  8%|▊ | 891/11346 [14:30<2:49:20, 1.03it/s]
1145
  8%|▊ | 892/11346 [14:31<2:49:22, 1.03it/s]
1146
  8%|▊ | 893/11346 [14:32<2:49:17, 1.03it/s]
1147
  8%|▊ | 894/11346 [14:33<2:49:19, 1.03it/s]
1148
  8%|▊ | 895/11346 [14:34<2:49:22, 1.03it/s]
1149
  8%|▊ | 896/11346 [14:35<2:49:19, 1.03it/s]
1150
  8%|▊ | 897/11346 [14:36<2:49:17, 1.03it/s]
1151
  8%|▊ | 898/11346 [14:37<2:49:24, 1.03it/s]
1152
  8%|▊ | 899/11346 [14:38<2:49:20, 1.03it/s]
1153
  8%|▊ | 900/11346 [14:39<2:49:14, 1.03it/s]
1154
  8%|▊ | 901/11346 [14:40<2:49:16, 1.03it/s]
1155
  8%|▊ | 902/11346 [14:41<2:49:12, 1.03it/s]
1156
  8%|▊ | 903/11346 [14:42<2:49:08, 1.03it/s]
1157
  8%|▊ | 904/11346 [14:43<2:49:13, 1.03it/s]
1158
  8%|▊ | 905/11346 [14:44<2:49:17, 1.03it/s]
1159
  8%|▊ | 906/11346 [14:45<2:49:15, 1.03it/s]
1160
  8%|▊ | 907/11346 [14:46<2:49:08, 1.03it/s]
1161
  8%|▊ | 908/11346 [14:47<2:49:09, 1.03it/s]
1162
  8%|▊ | 909/11346 [14:48<2:49:06, 1.03it/s]
1163
  8%|▊ | 910/11346 [14:49<2:49:07, 1.03it/s]
1164
  8%|▊ | 911/11346 [14:50<2:49:04, 1.03it/s]
1165
  8%|▊ | 912/11346 [14:51<2:49:13, 1.03it/s]
1166
  8%|▊ | 913/11346 [14:52<2:49:08, 1.03it/s]
1167
  8%|▊ | 914/11346 [14:53<2:49:06, 1.03it/s]
1168
  8%|▊ | 915/11346 [14:54<2:49:03, 1.03it/s]
1169
  8%|▊ | 916/11346 [14:55<2:49:04, 1.03it/s]
1170
  8%|▊ | 917/11346 [14:56<2:49:02, 1.03it/s]
1171
  8%|▊ | 918/11346 [14:57<2:49:00, 1.03it/s]
1172
  8%|▊ | 919/11346 [14:58<2:48:58, 1.03it/s]
1173
  8%|▊ | 920/11346 [14:58<2:49:00, 1.03it/s]
1174
  8%|▊ | 921/11346 [14:59<2:48:58, 1.03it/s]
1175
  8%|▊ | 922/11346 [15:00<2:49:00, 1.03it/s]
1176
  8%|▊ | 923/11346 [15:01<2:49:00, 1.03it/s]
1177
  8%|▊ | 924/11346 [15:02<2:48:57, 1.03it/s]
1178
  8%|▊ | 925/11346 [15:03<2:48:52, 1.03it/s]
1179
  8%|▊ | 926/11346 [15:04<2:48:47, 1.03it/s]
1180
  8%|▊ | 927/11346 [15:05<2:48:45, 1.03it/s]
1181
  8%|▊ | 928/11346 [15:06<2:48:44, 1.03it/s]
1182
  8%|▊ | 929/11346 [15:07<2:48:45, 1.03it/s]
1183
  8%|▊ | 930/11346 [15:08<2:48:47, 1.03it/s]
1184
  8%|▊ | 931/11346 [15:09<2:48:46, 1.03it/s]
1185
  8%|▊ | 932/11346 [15:10<2:48:43, 1.03it/s]
1186
  8%|▊ | 933/11346 [15:11<2:48:43, 1.03it/s]
1187
  8%|▊ | 934/11346 [15:12<2:48:42, 1.03it/s]
1188
  8%|▊ | 935/11346 [15:13<2:48:41, 1.03it/s]
1189
  8%|▊ | 936/11346 [15:14<2:48:37, 1.03it/s]
1190
  8%|▊ | 937/11346 [15:15<2:48:32, 1.03it/s]
1191
  8%|▊ | 938/11346 [15:16<2:48:42, 1.03it/s]
1192
  8%|▊ | 939/11346 [15:17<2:48:41, 1.03it/s]
1193
  8%|▊ | 940/11346 [15:18<2:48:38, 1.03it/s]
1194
  8%|▊ | 941/11346 [15:19<2:48:35, 1.03it/s]
1195
  8%|▊ | 942/11346 [15:20<2:48:35, 1.03it/s]
1196
  8%|▊ | 943/11346 [15:21<2:48:30, 1.03it/s]
1197
  8%|▊ | 944/11346 [15:22<2:48:26, 1.03it/s]
1198
  8%|▊ | 945/11346 [15:23<2:48:24, 1.03it/s]
1199
  8%|▊ | 946/11346 [15:24<2:48:26, 1.03it/s]
1200
  8%|▊ | 947/11346 [15:25<2:48:34, 1.03it/s]
1201
  8%|▊ | 948/11346 [15:26<2:48:28, 1.03it/s]
1202
  8%|▊ | 949/11346 [15:27<2:48:28, 1.03it/s]
1203
  8%|▊ | 950/11346 [15:28<2:48:30, 1.03it/s]
1204
  8%|▊ | 951/11346 [15:29<2:48:30, 1.03it/s]
1205
  8%|▊ | 952/11346 [15:30<2:48:31, 1.03it/s]
1206
  8%|▊ | 953/11346 [15:31<2:48:28, 1.03it/s]
1207
  8%|▊ | 954/11346 [15:32<2:48:31, 1.03it/s]
1208
  8%|▊ | 955/11346 [15:33<2:48:25, 1.03it/s]
1209
  8%|▊ | 956/11346 [15:33<2:48:19, 1.03it/s]
1210
  8%|▊ | 957/11346 [15:34<2:48:20, 1.03it/s]
1211
  8%|▊ | 958/11346 [15:35<2:48:17, 1.03it/s]
1212
  8%|▊ | 959/11346 [15:36<2:48:16, 1.03it/s]
1213
  8%|▊ | 960/11346 [15:37<2:48:15, 1.03it/s]
1214
  8%|▊ | 961/11346 [15:38<2:48:15, 1.03it/s]
1215
  8%|▊ | 962/11346 [15:39<2:48:13, 1.03it/s]
1216
  8%|▊ | 963/11346 [15:40<2:48:11, 1.03it/s]
1217
  8%|▊ | 964/11346 [15:41<2:48:13, 1.03it/s]
1218
  9%|▊ | 965/11346 [15:42<2:48:12, 1.03it/s]
1219
  9%|▊ | 966/11346 [15:43<2:48:09, 1.03it/s]
1220
  9%|▊ | 967/11346 [15:44<2:48:09, 1.03it/s]
1221
  9%|▊ | 968/11346 [15:45<2:48:11, 1.03it/s]
1222
  9%|▊ | 969/11346 [15:46<2:48:09, 1.03it/s]
1223
  9%|▊ | 970/11346 [15:47<2:48:04, 1.03it/s]
1224
  9%|▊ | 971/11346 [15:48<2:48:03, 1.03it/s]
1225
  9%|▊ | 972/11346 [15:49<2:48:06, 1.03it/s]
1226
  9%|▊ | 973/11346 [15:50<2:48:06, 1.03it/s]
1227
  9%|▊ | 974/11346 [15:51<2:48:00, 1.03it/s]
1228
  9%|▊ | 975/11346 [15:52<2:48:02, 1.03it/s]
1229
  9%|▊ | 976/11346 [15:53<2:48:03, 1.03it/s]
1230
  9%|▊ | 977/11346 [15:54<2:48:03, 1.03it/s]
1231
  9%|▊ | 978/11346 [15:55<2:47:59, 1.03it/s]
1232
  9%|▊ | 979/11346 [15:56<2:47:59, 1.03it/s]
1233
  9%|▊ | 980/11346 [15:57<2:47:57, 1.03it/s]
1234
  9%|▊ | 981/11346 [15:58<2:47:51, 1.03it/s]
1235
  9%|▊ | 982/11346 [15:59<2:47:47, 1.03it/s]
1236
  9%|▊ | 983/11346 [16:00<2:47:45, 1.03it/s]
1237
  9%|▊ | 984/11346 [16:01<2:47:51, 1.03it/s]
1238
  9%|▊ | 985/11346 [16:02<2:47:50, 1.03it/s]
1239
  9%|▊ | 986/11346 [16:03<2:47:49, 1.03it/s]
1240
  9%|▊ | 987/11346 [16:04<2:47:50, 1.03it/s]
1241
  9%|▊ | 988/11346 [16:05<2:47:47, 1.03it/s]
1242
  9%|▊ | 989/11346 [16:06<2:47:46, 1.03it/s]
1243
  9%|▊ | 990/11346 [16:07<2:47:42, 1.03it/s]
1244
  9%|▊ | 991/11346 [16:08<2:47:49, 1.03it/s]
1245
  9%|▊ | 992/11346 [16:08<2:47:49, 1.03it/s]
1246
  9%|▉ | 993/11346 [16:09<2:47:48, 1.03it/s]
1247
  9%|▉ | 994/11346 [16:10<2:47:55, 1.03it/s]
1248
  9%|▉ | 995/11346 [16:11<2:47:53, 1.03it/s]
1249
  9%|▉ | 996/11346 [16:12<2:47:48, 1.03it/s]
1250
  9%|▉ | 997/11346 [16:13<2:47:48, 1.03it/s]
1251
  9%|▉ | 998/11346 [16:14<2:47:47, 1.03it/s]
1252
  9%|▉ | 999/11346 [16:15<2:47:44, 1.03it/s]
1253
  9%|▉ | 1000/11346 [16:16<2:47:39, 1.03it/s]
1254
 
1255
  9%|▉ | 1000/11346 [16:16<2:47:39, 1.03it/s][INFO|trainer.py:3662] 2024-06-05 03:21:57,117 >> ***** Running Evaluation *****
1256
+ [INFO|trainer.py:3664] 2024-06-05 03:21:57,117 >> Num examples = 1840
1257
+ [INFO|trainer.py:3667] 2024-06-05 03:21:57,117 >> Batch size = 48
1258
+ {'loss': 5.1118, 'grad_norm': 0.8546391725540161, 'learning_rate': 8.816009873931059e-05, 'epoch': 0.13}
1259
+ {'loss': 3.406, 'grad_norm': 0.8593688607215881, 'learning_rate': 9.59831475011252e-05, 'epoch': 0.26}
1260
+
1261
+
1262
  0%| | 0/39 [00:00<?, ?it/s]
1263
+
1264
  5%|▌ | 2/39 [00:01<00:27, 1.34it/s]
1265
+
1266
  8%|▊ | 3/39 [00:02<00:37, 1.05s/it]
1267
+
1268
  10%|█ | 4/39 [00:04<00:42, 1.22s/it]
1269
+
1270
  13%|█▎ | 5/39 [00:05<00:44, 1.31s/it]
1271
+
1272
  15%|█▌ | 6/39 [00:07<00:45, 1.37s/it]
1273
+
1274
  18%|█▊ | 7/39 [00:08<00:44, 1.41s/it]
1275
+
1276
  21%|██ | 8/39 [00:10<00:44, 1.43s/it]
1277
+
1278
  23%|██▎ | 9/39 [00:11<00:43, 1.45s/it]
1279
+
1280
  26%|██▌ | 10/39 [00:13<00:42, 1.46s/it]
1281
+
1282
  28%|██▊ | 11/39 [00:14<00:41, 1.47s/it]
1283
+
1284
  31%|███ | 12/39 [00:16<00:39, 1.47s/it]
1285
+
1286
  33%|███▎ | 13/39 [00:17<00:38, 1.48s/it]
1287
+
1288
  36%|███▌ | 14/39 [00:19<00:36, 1.48s/it]
1289
+
1290
  38%|███▊ | 15/39 [00:20<00:35, 1.48s/it]
1291
+
1292
  41%|████ | 16/39 [00:22<00:34, 1.48s/it]
1293
+
1294
  44%|████▎ | 17/39 [00:23<00:32, 1.48s/it]
1295
+
1296
  46%|████▌ | 18/39 [00:25<00:31, 1.48s/it]
1297
+
1298
  49%|████▊ | 19/39 [00:26<00:29, 1.48s/it]
1299
+
1300
  51%|█████▏ | 20/39 [00:28<00:28, 1.48s/it]
1301
+
1302
  54%|█████▍ | 21/39 [00:29<00:26, 1.48s/it]
1303
+
1304
  56%|█████▋ | 22/39 [00:31<00:25, 1.48s/it]
1305
+
1306
  59%|█████▉ | 23/39 [00:32<00:23, 1.48s/it]
1307
+
1308
  62%|██████▏ | 24/39 [00:34<00:22, 1.48s/it]
1309
+
1310
  64%|██████▍ | 25/39 [00:35<00:20, 1.48s/it]
1311
+
1312
  67%|██████▋ | 26/39 [00:37<00:19, 1.48s/it]
1313
+
1314
  69%|██████▉ | 27/39 [00:38<00:17, 1.48s/it]
1315
+
1316
  72%|███████▏ | 28/39 [00:40<00:16, 1.48s/it]
1317
+
1318
  74%|███████▍ | 29/39 [00:41<00:14, 1.48s/it]
1319
+
1320
  77%|███████▋ | 30/39 [00:43<00:13, 1.48s/it]
1321
+
1322
  79%|███████▉ | 31/39 [00:44<00:11, 1.48s/it]
1323
+
1324
  82%|████████▏ | 32/39 [00:46<00:10, 1.48s/it]
1325
+
1326
  85%|████████▍ | 33/39 [00:47<00:08, 1.48s/it]
1327
+
1328
  87%|████████▋ | 34/39 [00:48<00:07, 1.48s/it]
1329
+
1330
  90%|████████▉ | 35/39 [00:50<00:05, 1.48s/it]
1331
+
1332
  92%|█████████▏| 36/39 [00:51<00:04, 1.48s/it]
1333
+
1334
  95%|█████████▍| 37/39 [00:53<00:02, 1.48s/it]
1335
+
1336
  97%|█████████▋| 38/39 [00:54<00:01, 1.46s/it]
1337
+
1338
 
1339
+
1340
 
1341
  9%|▉ | 1000/11346 [17:30<2:47:39, 1.03it/s]
1342
+
1343
+
1344
  [INFO|trainer.py:3353] 2024-06-05 03:23:11,169 >> Saving model checkpoint to ./training_outputs_job_117568_1_05-06_03-05/checkpoint-1000
1345
+ [INFO|configuration_utils.py:471] 2024-06-05 03:23:11,183 >> Configuration saved in ./training_outputs_job_117568_1_05-06_03-05/checkpoint-1000/config.json
1346
+ [INFO|configuration_utils.py:705] 2024-06-05 03:23:11,189 >> Configuration saved in ./training_outputs_job_117568_1_05-06_03-05/checkpoint-1000/generation_config.json
1347
+ [INFO|modeling_utils.py:2592] 2024-06-05 03:23:12,091 >> Model weights saved in ./training_outputs_job_117568_1_05-06_03-05/checkpoint-1000/model.safetensors
1348
+ [INFO|tokenization_utils_base.py:2503] 2024-06-05 03:23:12,105 >> tokenizer config file saved in ./training_outputs_job_117568_1_05-06_03-05/checkpoint-1000/tokenizer_config.json
1349
+ [INFO|tokenization_utils_base.py:2512] 2024-06-05 03:23:12,110 >> Special tokens file saved in ./training_outputs_job_117568_1_05-06_03-05/checkpoint-1000/special_tokens_map.json
1350
+ [INFO|tokenization_utils_base.py:2503] 2024-06-05 03:23:14,277 >> tokenizer config file saved in ./training_outputs_job_117568_1_05-06_03-05/tokenizer_config.json
1351
+ [INFO|tokenization_utils_base.py:2512] 2024-06-05 03:23:14,282 >> Special tokens file saved in ./training_outputs_job_117568_1_05-06_03-05/special_tokens_map.json
1352
+ /home/dshteyma/miniconda3/lib/python3.9/site-packages/torch/nn/parallel/_functions.py:68: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
1353
+ warnings.warn('Was asked to gather along dimension 0, but all '
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c47fea650ec741b07e6a187541e4217459975b8d59c02f835544382c220ca692
3
+ size 272123144
pip_freeze.txt ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==2.1.0
2
+ accelerate==0.26.1
3
+ aiofiles==23.2.1
4
+ aiohttp==3.8.6
5
+ aiosignal==1.3.1
6
+ altair==5.3.0
7
+ annotated-types==0.6.0
8
+ antlr4-python3-runtime==4.9.3
9
+ anyio==4.0.0
10
+ argon2-cffi==23.1.0
11
+ argon2-cffi-bindings==21.2.0
12
+ arrow==1.3.0
13
+ asttokens==2.4.0
14
+ astunparse==1.6.3
15
+ async-lru==2.0.4
16
+ async-timeout==4.0.3
17
+ attrs==23.1.0
18
+ auto-gptq==0.6.0
19
+ Babel==2.13.0
20
+ backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work
21
+ beartype==0.17.2
22
+ beautifulsoup4==4.12.2
23
+ bitsandbytes==0.43.1
24
+ bleach==6.1.0
25
+ blis==0.7.11
26
+ brotlipy==0.7.0
27
+ cachetools==5.3.2
28
+ catalogue==2.0.10
29
+ certifi==2023.7.22
30
+ cffi==1.16.0
31
+ chardet==5.2.0
32
+ charset-normalizer==3.3.0
33
+ click==8.1.7
34
+ cloudpathlib==0.16.0
35
+ cloudpickle==3.0.0
36
+ colorama @ file:///tmp/build/80754af9/colorama_1607707115595/work
37
+ coloredlogs==15.0.1
38
+ comm==0.1.4
39
+ conda==4.12.0
40
+ conda-content-trust @ file:///tmp/build/80754af9/conda-content-trust_1617045594566/work
41
+ conda-package-handling @ file:///tmp/build/80754af9/conda-package-handling_1649105784853/work
42
+ confection==0.1.4
43
+ contextlib2==21.6.0
44
+ contexttimer==0.3.3
45
+ contourpy==1.1.1
46
+ cryptography @ file:///tmp/build/80754af9/cryptography_1639414572950/work
47
+ cycler==0.12.1
48
+ cymem==2.0.8
49
+ dataclasses-json==0.6.4
50
+ DataProperty==1.0.1
51
+ datasets==2.19.1
52
+ debugpy==1.8.0
53
+ decorator @ file:///opt/conda/conda-bld/decorator_1643638310831/work
54
+ defusedxml==0.7.1
55
+ dill==0.3.7
56
+ dnspython==2.6.1
57
+ docstring_parser==0.16
58
+ dos2unix==1
59
+ einops==0.8.0
60
+ eval_type_backport==0.2.0
61
+ evaluate==0.4.1
62
+ exceptiongroup==1.1.3
63
+ executing==2.0.0
64
+ fastapi==0.111.0
65
+ fastapi-cli==0.0.2
66
+ fastchat==0.1.0
67
+ fastjsonschema==2.18.1
68
+ ffmpy==0.3.2
69
+ filelock==3.12.4
70
+ fire==0.5.0
71
+ flash-attn==2.5.8
72
+ flatbuffers==23.5.26
73
+ fonttools==4.43.1
74
+ fqdn==1.5.1
75
+ frozenlist==1.4.0
76
+ fschat==0.2.36
77
+ fsspec==2023.6.0
78
+ gast==0.5.4
79
+ gekko==1.0.6
80
+ globals==0.3.36
81
+ google-auth==2.27.0
82
+ google-auth-oauthlib==1.2.0
83
+ google-pasta==0.2.0
84
+ gradio==4.29.0
85
+ gradio_client==0.16.1
86
+ greenlet==3.0.3
87
+ grpcio==1.60.1
88
+ h11==0.14.0
89
+ h5py==3.10.0
90
+ httpcore==1.0.5
91
+ httptools==0.6.1
92
+ httpx==0.27.0
93
+ huggingface-hub==0.22.2
94
+ humanfriendly==10.0
95
+ hydra-core==1.3.2
96
+ hydra-joblib-launcher==1.2.0
97
+ hydra-submitit-launcher==1.2.0
98
+ idna==3.4
99
+ importlib-metadata==6.8.0
100
+ importlib-resources==6.1.0
101
+ ipykernel==6.25.2
102
+ ipython==8.18.1
103
+ isoduration==20.11.0
104
+ jedi==0.19.1
105
+ Jinja2==3.1.2
106
+ joblib==1.3.2
107
+ json5==0.9.14
108
+ jsonlines==4.0.0
109
+ jsonpatch==1.33
110
+ jsonpointer==2.4
111
+ jsonschema==4.19.1
112
+ jsonschema-specifications==2023.7.1
113
+ jupyter-events==0.7.0
114
+ jupyter-lsp==2.2.0
115
+ jupyter_client==8.3.1
116
+ jupyter_core==5.3.2
117
+ jupyter_server==2.7.3
118
+ jupyter_server_terminals==0.4.4
119
+ jupyterlab==4.0.6
120
+ jupyterlab-pygments==0.2.2
121
+ jupyterlab_server==2.25.0
122
+ keras==2.15.0
123
+ kiwisolver==1.4.5
124
+ langchain==0.1.8
125
+ langchain-community==0.0.21
126
+ langchain-core==0.1.25
127
+ langcodes==3.3.0
128
+ langdetect==1.0.9
129
+ langsmith==0.1.5
130
+ libclang==16.0.6
131
+ lxml==5.1.0
132
+ Markdown==3.5.2
133
+ markdown-it-py==3.0.0
134
+ markdown2==2.4.13
135
+ MarkupSafe==2.1.5
136
+ marshmallow==3.20.2
137
+ matplotlib==3.8.0
138
+ matplotlib-inline @ file:///opt/conda/conda-bld/matplotlib-inline_1662014470464/work
139
+ mbstrdecoder==1.1.3
140
+ mdurl==0.1.2
141
+ mistune==3.0.2
142
+ ml-collections==0.1.1
143
+ ml-dtypes==0.2.0
144
+ more-itertools==10.2.0
145
+ mpmath==1.3.0
146
+ multidict==6.0.4
147
+ multiprocess==0.70.15
148
+ murmurhash==1.0.10
149
+ mypy-extensions==1.0.0
150
+ nbclient==0.8.0
151
+ nbconvert==7.9.2
152
+ nbformat==5.9.2
153
+ nest-asyncio==1.5.8
154
+ networkx==3.1
155
+ nh3==0.2.17
156
+ ninja==1.11.1.1
157
+ nltk==3.8.1
158
+ notebook==7.0.4
159
+ notebook_shim==0.2.3
160
+ numexpr==2.9.0
161
+ numpy==1.26.0
162
+ nvidia-cublas-cu12==12.1.3.1
163
+ nvidia-cuda-cupti-cu12==12.1.105
164
+ nvidia-cuda-nvrtc-cu12==12.1.105
165
+ nvidia-cuda-runtime-cu12==12.1.105
166
+ nvidia-cudnn-cu12==8.9.2.26
167
+ nvidia-cufft-cu12==11.0.2.54
168
+ nvidia-curand-cu12==10.3.2.106
169
+ nvidia-cusolver-cu12==11.4.5.107
170
+ nvidia-cusparse-cu12==12.1.0.106
171
+ nvidia-ml-py3==7.352.0
172
+ nvidia-nccl-cu12==2.18.1
173
+ nvidia-nvjitlink-cu12==12.2.140
174
+ nvidia-nvtx-cu12==12.1.105
175
+ oauthlib==3.2.2
176
+ omegaconf==2.3.0
177
+ opt-einsum==3.3.0
178
+ optimum==1.16.2
179
+ orjson==3.10.3
180
+ overrides==7.4.0
181
+ packaging==23.2
182
+ pandas==2.1.1
183
+ pandocfilters==1.5.0
184
+ parso @ file:///opt/conda/conda-bld/parso_1641458642106/work
185
+ pathvalidate==3.2.0
186
+ patsy==0.5.3
187
+ peft==0.8.2
188
+ pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work
189
+ pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work
190
+ Pillow==10.0.1
191
+ platformdirs==3.11.0
192
+ plotly==5.17.0
193
+ plotly-express==0.4.1
194
+ portalocker==2.8.2
195
+ preshed==3.0.9
196
+ prometheus-client==0.17.1
197
+ prompt-toolkit==3.0.43
198
+ protobuf==3.20.3
199
+ psutil==5.9.5
200
+ ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
201
+ pure-eval @ file:///opt/conda/conda-bld/pure_eval_1646925070566/work
202
+ pyarrow==13.0.0
203
+ pyarrow-hotfix==0.6
204
+ pyasn1==0.5.1
205
+ pyasn1-modules==0.3.0
206
+ pybind11==2.11.1
207
+ pycosat==0.6.3
208
+ pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
209
+ pydantic==2.6.1
210
+ pydantic_core==2.16.2
211
+ pydub==0.25.1
212
+ Pygments==2.16.1
213
+ pyOpenSSL @ file:///opt/conda/conda-bld/pyopenssl_1643788558760/work
214
+ pyparsing==3.1.1
215
+ PySocks @ file:///tmp/build/80754af9/pysocks_1605305812635/work
216
+ pytablewriter==1.2.0
217
+ python-dateutil==2.8.2
218
+ python-dotenv==1.0.1
219
+ python-helper==0.3.74
220
+ python-json-logger==2.0.7
221
+ python-multipart==0.0.9
222
+ pytz==2023.3.post1
223
+ PyYAML==6.0.1
224
+ pyzmq==25.1.1
225
+ referencing==0.30.2
226
+ regex==2023.10.3
227
+ requests==2.31.0
228
+ requests-oauthlib==1.3.1
229
+ responses==0.18.0
230
+ rfc3339-validator==0.1.4
231
+ rfc3986-validator==0.1.1
232
+ rich==13.7.1
233
+ rotary-embedding-torch==0.5.3
234
+ rouge==1.0.1
235
+ rouge-score==0.1.2
236
+ rpds-py==0.10.4
237
+ rsa==4.9
238
+ ruamel-yaml-conda @ file:///tmp/build/80754af9/ruamel_yaml_1616016711199/work
239
+ ruff==0.4.3
240
+ sacrebleu==2.4.0
241
+ safetensors==0.4.3
242
+ scikit-learn==1.4.1.post1
243
+ scipy==1.11.3
244
+ seaborn==0.13.0
245
+ semantic-version==2.10.0
246
+ Send2Trash==1.8.2
247
+ sentencepiece==0.2.0
248
+ shellingham==1.5.4
249
+ shortuuid==1.0.13
250
+ shtab==1.7.1
251
+ six @ file:///tmp/build/80754af9/six_1644875935023/work
252
+ smart-open==6.4.0
253
+ sniffio==1.3.0
254
+ soupsieve==2.5
255
+ spacy==3.7.4
256
+ spacy-legacy==3.0.12
257
+ spacy-loggers==1.0.5
258
+ speculative-decoding==0.1.2
259
+ SQLAlchemy==2.0.27
260
+ sqlitedict==2.1.0
261
+ srsly==2.4.8
262
+ stack-data==0.6.3
263
+ starlette==0.37.2
264
+ statsmodels==0.14.0
265
+ submitit==1.5.1
266
+ svgwrite==1.4.3
267
+ sympy==1.12
268
+ tabledata==1.3.3
269
+ tabulate==0.9.0
270
+ tcolorpy==0.1.4
271
+ tenacity==8.2.3
272
+ tensorboard==2.15.1
273
+ tensorboard-data-server==0.7.2
274
+ tensorflow==2.15.0.post1
275
+ tensorflow-estimator==2.15.0
276
+ tensorflow-io-gcs-filesystem==0.35.0
277
+ tensorrt==8.6.1.post1
278
+ tensorrt-bindings==8.6.1
279
+ tensorrt-libs==8.6.1
280
+ termcolor==2.4.0
281
+ terminado==0.17.1
282
+ thinc==8.2.3
283
+ threadpoolctl==3.3.0
284
+ tiktoken==0.6.0
285
+ tinycss2==1.2.1
286
+ tk==0.1.0
287
+ tokenizers==0.19.1
288
+ tomli==2.0.1
289
+ tomlkit==0.12.0
290
+ toolz==0.12.1
291
+ torch==2.1.0
292
+ torchaudio==2.1.0
293
+ torchvision==0.16.0
294
+ tornado==6.3.3
295
+ tqdm==4.66.1
296
+ tqdm-multiprocess==0.0.11
297
+ traitlets==5.11.2
298
+ -e git+https://github.com/huggingface/transformers.git@bbaa8ceff696c479aecdb4575b2deb1349efd3aa#egg=transformers
299
+ triton==2.1.0
300
+ trl==0.8.6
301
+ typepy==1.3.2
302
+ typer==0.12.3
303
+ types-python-dateutil==2.8.19.14
304
+ typing-inspect==0.9.0
305
+ typing_extensions==4.8.0
306
+ tyro==0.8.3
307
+ tzdata==2023.3
308
+ ujson==5.9.0
309
+ unsloth @ git+https://github.com/unslothai/unsloth.git@4211cc01409e3ced4f7abebaf68e244193b46e2c
310
+ uri-template==1.3.0
311
+ urllib3==2.0.6
312
+ uvicorn==0.29.0
313
+ uvloop==0.19.0
314
+ wasabi==1.1.2
315
+ watchfiles==0.21.0
316
+ wavedrom==2.0.3.post3
317
+ wcwidth==0.2.8
318
+ weasel==0.3.4
319
+ webcolors==1.13
320
+ webencodings==0.5.1
321
+ websocket-client==1.6.4
322
+ websockets==11.0.3
323
+ Werkzeug==3.0.1
324
+ word2number==1.1
325
+ wrapt==1.14.1
326
+ xformers @ https://download.pytorch.org/whl/cu121/xformers-0.0.22.post7-cp39-cp39-manylinux2014_x86_64.whl
327
+ xxhash==3.4.1
328
+ yarl==1.9.2
329
+ zipp==3.17.0
330
+ zstandard==0.22.0
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 2048,
36
+ "pad_token": "<unk>",
37
+ "padding": "max_length",
38
+ "return_tensors": "pt",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false,
44
+ "use_fast": true
45
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a8c3b8deb94d253a20c7d637102edeaa129f75276f850abb181ddfd4b1ddcf
3
+ size 5176