Commit
·
bd5c19c
1
Parent(s):
47c1546
Model save
Browse files- README.md +357 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: cardiffnlp/twitter-roberta-base-2019-90m
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: 2020-Q1-50p-filtered
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# 2020-Q1-50p-filtered
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.8674
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 1e-05
|
38 |
+
- train_batch_size: 16
|
39 |
+
- eval_batch_size: 16
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 1400
|
44 |
+
- training_steps: 2400000
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-------:|:---------------:|
|
50 |
+
| No log | 0.03 | 8000 | 2.6129 |
|
51 |
+
| 2.7516 | 0.07 | 16000 | 2.5602 |
|
52 |
+
| 2.7516 | 0.1 | 24000 | 2.5610 |
|
53 |
+
| 2.6478 | 0.13 | 32000 | 2.5580 |
|
54 |
+
| 2.6478 | 0.16 | 40000 | 2.5499 |
|
55 |
+
| 2.6344 | 0.2 | 48000 | 2.5423 |
|
56 |
+
| 2.6344 | 0.23 | 56000 | 2.5432 |
|
57 |
+
| 2.6174 | 0.26 | 64000 | 2.5504 |
|
58 |
+
| 2.6174 | 0.3 | 72000 | 2.5349 |
|
59 |
+
| 2.5993 | 0.33 | 80000 | 2.5332 |
|
60 |
+
| 2.5993 | 0.36 | 88000 | 2.5342 |
|
61 |
+
| 2.5948 | 0.39 | 96000 | 2.5297 |
|
62 |
+
| 2.5948 | 0.43 | 104000 | 2.5301 |
|
63 |
+
| 2.5846 | 0.46 | 112000 | 2.5200 |
|
64 |
+
| 2.5846 | 0.49 | 120000 | 2.5175 |
|
65 |
+
| 2.5774 | 0.52 | 128000 | 2.5151 |
|
66 |
+
| 2.5774 | 0.56 | 136000 | 2.5126 |
|
67 |
+
| 2.5584 | 0.59 | 144000 | 2.5007 |
|
68 |
+
| 2.5584 | 0.62 | 152000 | 2.5149 |
|
69 |
+
| 2.5578 | 0.66 | 160000 | 2.5198 |
|
70 |
+
| 2.5578 | 0.69 | 168000 | 2.5137 |
|
71 |
+
| 2.5699 | 0.72 | 176000 | 2.5190 |
|
72 |
+
| 2.5699 | 0.75 | 184000 | 2.5280 |
|
73 |
+
| 2.5648 | 0.79 | 192000 | 2.5205 |
|
74 |
+
| 2.5648 | 0.82 | 200000 | 2.5267 |
|
75 |
+
| 2.5701 | 0.85 | 208000 | 2.5334 |
|
76 |
+
| 2.5701 | 0.89 | 216000 | 2.5360 |
|
77 |
+
| 2.5688 | 0.92 | 224000 | 2.5404 |
|
78 |
+
| 2.5688 | 0.95 | 232000 | 2.5365 |
|
79 |
+
| 2.5788 | 0.98 | 240000 | 2.5485 |
|
80 |
+
| 2.5788 | 1.02 | 248000 | 2.5407 |
|
81 |
+
| 2.5857 | 1.05 | 256000 | 2.5444 |
|
82 |
+
| 2.5857 | 1.08 | 264000 | 2.5507 |
|
83 |
+
| 2.576 | 1.11 | 272000 | 2.5567 |
|
84 |
+
| 2.576 | 1.15 | 280000 | 2.5561 |
|
85 |
+
| 2.5919 | 1.18 | 288000 | 2.5641 |
|
86 |
+
| 2.5919 | 1.21 | 296000 | 2.5574 |
|
87 |
+
| 2.5893 | 1.25 | 304000 | 2.5563 |
|
88 |
+
| 2.5893 | 1.28 | 312000 | 2.5708 |
|
89 |
+
| 2.5896 | 1.31 | 320000 | 2.5713 |
|
90 |
+
| 2.5896 | 1.34 | 328000 | 2.5756 |
|
91 |
+
| 2.6066 | 1.38 | 336000 | 2.5868 |
|
92 |
+
| 2.6066 | 1.41 | 344000 | 2.5921 |
|
93 |
+
| 2.6121 | 1.44 | 352000 | 2.6053 |
|
94 |
+
| 2.6121 | 1.48 | 360000 | 2.6046 |
|
95 |
+
| 2.6161 | 1.51 | 368000 | 2.5994 |
|
96 |
+
| 2.6161 | 1.54 | 376000 | 2.6035 |
|
97 |
+
| 2.6313 | 1.57 | 384000 | 2.6119 |
|
98 |
+
| 2.6313 | 1.61 | 392000 | 2.6016 |
|
99 |
+
| 2.6342 | 1.64 | 400000 | 2.6207 |
|
100 |
+
| 2.6342 | 1.67 | 408000 | 2.6231 |
|
101 |
+
| 2.6358 | 1.7 | 416000 | 2.6288 |
|
102 |
+
| 2.6358 | 1.74 | 424000 | 2.6335 |
|
103 |
+
| 2.6463 | 1.77 | 432000 | 2.6356 |
|
104 |
+
| 2.6463 | 1.8 | 440000 | 2.6430 |
|
105 |
+
| 2.6561 | 1.84 | 448000 | 2.6440 |
|
106 |
+
| 2.6561 | 1.87 | 456000 | 2.6445 |
|
107 |
+
| 2.6748 | 1.9 | 464000 | 2.6507 |
|
108 |
+
| 2.6748 | 1.93 | 472000 | 2.6547 |
|
109 |
+
| 2.6847 | 1.97 | 480000 | 2.6643 |
|
110 |
+
| 2.6847 | 2.0 | 488000 | 2.6703 |
|
111 |
+
| 2.6772 | 2.03 | 496000 | 2.6747 |
|
112 |
+
| 2.6772 | 2.07 | 504000 | 2.6656 |
|
113 |
+
| 2.6668 | 2.1 | 512000 | 2.6768 |
|
114 |
+
| 2.6668 | 2.13 | 520000 | 2.6692 |
|
115 |
+
| 2.6802 | 2.16 | 528000 | 2.6730 |
|
116 |
+
| 2.6802 | 2.2 | 536000 | 2.6746 |
|
117 |
+
| 2.6856 | 2.23 | 544000 | 2.6787 |
|
118 |
+
| 2.6856 | 2.26 | 552000 | 2.6778 |
|
119 |
+
| 2.6874 | 2.29 | 560000 | 2.6909 |
|
120 |
+
| 2.6874 | 2.33 | 568000 | 2.6919 |
|
121 |
+
| 2.6956 | 2.36 | 576000 | 2.6947 |
|
122 |
+
| 2.6956 | 2.39 | 584000 | 2.7032 |
|
123 |
+
| 2.7081 | 2.43 | 592000 | 2.7079 |
|
124 |
+
| 2.7081 | 2.46 | 600000 | 2.7103 |
|
125 |
+
| 2.7124 | 2.49 | 608000 | 2.7139 |
|
126 |
+
| 2.7124 | 2.52 | 616000 | 2.7109 |
|
127 |
+
| 2.7221 | 2.56 | 624000 | 2.7153 |
|
128 |
+
| 2.7221 | 2.59 | 632000 | 2.7359 |
|
129 |
+
| 2.7131 | 2.62 | 640000 | 2.7279 |
|
130 |
+
| 2.7131 | 2.66 | 648000 | 2.7378 |
|
131 |
+
| 2.7268 | 2.69 | 656000 | 2.7380 |
|
132 |
+
| 2.7268 | 2.72 | 664000 | 2.7275 |
|
133 |
+
| 2.7373 | 2.75 | 672000 | 2.7440 |
|
134 |
+
| 2.7373 | 2.79 | 680000 | 2.7382 |
|
135 |
+
| 2.7576 | 2.82 | 688000 | 2.7430 |
|
136 |
+
| 2.7576 | 2.85 | 696000 | 2.7421 |
|
137 |
+
| 2.7495 | 2.88 | 704000 | 2.7519 |
|
138 |
+
| 2.7495 | 2.92 | 712000 | 2.7494 |
|
139 |
+
| 2.7626 | 2.95 | 720000 | 2.7541 |
|
140 |
+
| 2.7626 | 2.98 | 728000 | 2.7497 |
|
141 |
+
| 2.7551 | 3.02 | 736000 | 2.7625 |
|
142 |
+
| 2.7551 | 3.05 | 744000 | 2.7649 |
|
143 |
+
| 2.7606 | 3.08 | 752000 | 2.7590 |
|
144 |
+
| 2.7606 | 3.11 | 760000 | 2.7598 |
|
145 |
+
| 2.7709 | 3.15 | 768000 | 2.7686 |
|
146 |
+
| 2.7709 | 3.18 | 776000 | 2.7697 |
|
147 |
+
| 2.7687 | 3.21 | 784000 | 2.7807 |
|
148 |
+
| 2.7687 | 3.25 | 792000 | 2.7830 |
|
149 |
+
| 2.7745 | 3.28 | 800000 | 2.7677 |
|
150 |
+
| 2.7745 | 3.31 | 808000 | 2.7897 |
|
151 |
+
| 2.7596 | 3.34 | 816000 | 2.7825 |
|
152 |
+
| 2.7596 | 3.38 | 824000 | 2.7829 |
|
153 |
+
| 2.7749 | 3.41 | 832000 | 2.7868 |
|
154 |
+
| 2.7749 | 3.44 | 840000 | 2.7875 |
|
155 |
+
| 2.7788 | 3.47 | 848000 | 2.7907 |
|
156 |
+
| 2.7788 | 3.51 | 856000 | 2.7916 |
|
157 |
+
| 2.7792 | 3.54 | 864000 | 2.7935 |
|
158 |
+
| 2.7792 | 3.57 | 872000 | 2.7893 |
|
159 |
+
| 2.7871 | 3.61 | 880000 | 2.8003 |
|
160 |
+
| 2.7871 | 3.64 | 888000 | 2.7973 |
|
161 |
+
| 2.7967 | 3.67 | 896000 | 2.8102 |
|
162 |
+
| 2.7967 | 3.7 | 904000 | 2.8118 |
|
163 |
+
| 2.7896 | 3.74 | 912000 | 2.8059 |
|
164 |
+
| 2.7896 | 3.77 | 920000 | 2.8135 |
|
165 |
+
| 2.8021 | 3.8 | 928000 | 2.8108 |
|
166 |
+
| 2.8021 | 3.84 | 936000 | 2.8164 |
|
167 |
+
| 2.7931 | 3.87 | 944000 | 2.8173 |
|
168 |
+
| 2.7931 | 3.9 | 952000 | 2.8295 |
|
169 |
+
| 2.8105 | 3.93 | 960000 | 2.8248 |
|
170 |
+
| 2.8105 | 3.97 | 968000 | 2.8123 |
|
171 |
+
| 2.805 | 4.0 | 976000 | 2.8295 |
|
172 |
+
| 2.805 | 4.03 | 984000 | 2.8287 |
|
173 |
+
| 2.7959 | 4.06 | 992000 | 2.8266 |
|
174 |
+
| 2.7959 | 4.1 | 1000000 | 2.8445 |
|
175 |
+
| 2.8126 | 4.13 | 1008000 | 2.8260 |
|
176 |
+
| 2.8126 | 4.16 | 1016000 | 2.8294 |
|
177 |
+
| 2.8085 | 4.2 | 1024000 | 2.8394 |
|
178 |
+
| 2.8085 | 4.23 | 1032000 | 2.8360 |
|
179 |
+
| 2.8179 | 4.26 | 1040000 | 2.8394 |
|
180 |
+
| 2.8179 | 4.29 | 1048000 | 2.8409 |
|
181 |
+
| 2.8212 | 4.33 | 1056000 | 2.8342 |
|
182 |
+
| 2.8212 | 4.36 | 1064000 | 2.8416 |
|
183 |
+
| 2.8236 | 4.39 | 1072000 | 2.8393 |
|
184 |
+
| 2.8236 | 4.43 | 1080000 | 2.8459 |
|
185 |
+
| 2.8134 | 4.46 | 1088000 | 2.8444 |
|
186 |
+
| 2.8134 | 4.49 | 1096000 | 2.8435 |
|
187 |
+
| 2.8196 | 4.52 | 1104000 | 2.8484 |
|
188 |
+
| 2.8196 | 4.56 | 1112000 | 2.8537 |
|
189 |
+
| 2.8284 | 4.59 | 1120000 | 2.8541 |
|
190 |
+
| 2.8284 | 4.62 | 1128000 | 2.8401 |
|
191 |
+
| 2.8349 | 4.65 | 1136000 | 2.8476 |
|
192 |
+
| 2.8349 | 4.69 | 1144000 | 2.8476 |
|
193 |
+
| 2.8171 | 4.72 | 1152000 | 2.8438 |
|
194 |
+
| 2.8171 | 4.75 | 1160000 | 2.8535 |
|
195 |
+
| 2.8264 | 4.79 | 1168000 | 2.8428 |
|
196 |
+
| 2.8264 | 4.82 | 1176000 | 2.8552 |
|
197 |
+
| 2.8335 | 4.85 | 1184000 | 2.8573 |
|
198 |
+
| 2.8335 | 4.88 | 1192000 | 2.8505 |
|
199 |
+
| 2.8351 | 4.92 | 1200000 | 2.8512 |
|
200 |
+
| 2.8351 | 4.95 | 1208000 | 2.8500 |
|
201 |
+
| 2.8366 | 4.98 | 1216000 | 2.8570 |
|
202 |
+
| 2.8366 | 5.02 | 1224000 | 2.8470 |
|
203 |
+
| 2.8257 | 5.05 | 1232000 | 2.8638 |
|
204 |
+
| 2.8257 | 5.08 | 1240000 | 2.8512 |
|
205 |
+
| 2.8351 | 5.11 | 1248000 | 2.8641 |
|
206 |
+
| 2.8351 | 5.15 | 1256000 | 2.8680 |
|
207 |
+
| 2.8272 | 5.18 | 1264000 | 2.8521 |
|
208 |
+
| 2.8272 | 5.21 | 1272000 | 2.8616 |
|
209 |
+
| 2.8346 | 5.24 | 1280000 | 2.8545 |
|
210 |
+
| 2.8346 | 5.28 | 1288000 | 2.8477 |
|
211 |
+
| 2.8211 | 5.31 | 1296000 | 2.8602 |
|
212 |
+
| 2.8211 | 5.34 | 1304000 | 2.8574 |
|
213 |
+
| 2.8302 | 5.38 | 1312000 | 2.8490 |
|
214 |
+
| 2.8302 | 5.41 | 1320000 | 2.8547 |
|
215 |
+
| 2.8317 | 5.44 | 1328000 | 2.8536 |
|
216 |
+
| 2.8317 | 5.47 | 1336000 | 2.8553 |
|
217 |
+
| 2.83 | 5.51 | 1344000 | 2.8536 |
|
218 |
+
| 2.83 | 5.54 | 1352000 | 2.8565 |
|
219 |
+
| 2.8347 | 5.57 | 1360000 | 2.8445 |
|
220 |
+
| 2.8347 | 5.61 | 1368000 | 2.8540 |
|
221 |
+
| 2.8253 | 5.64 | 1376000 | 2.8630 |
|
222 |
+
| 2.8253 | 5.67 | 1384000 | 2.8592 |
|
223 |
+
| 2.8237 | 5.7 | 1392000 | 2.8635 |
|
224 |
+
| 2.8237 | 5.74 | 1400000 | 2.8621 |
|
225 |
+
| 2.8364 | 5.77 | 1408000 | 2.8545 |
|
226 |
+
| 2.8364 | 5.8 | 1416000 | 2.8682 |
|
227 |
+
| 2.8289 | 5.84 | 1424000 | 2.8675 |
|
228 |
+
| 2.8289 | 5.87 | 1432000 | 2.8597 |
|
229 |
+
| 2.8327 | 5.9 | 1440000 | 2.8728 |
|
230 |
+
| 2.8327 | 5.93 | 1448000 | 2.8644 |
|
231 |
+
| 2.8407 | 5.97 | 1456000 | 2.8640 |
|
232 |
+
| 2.8407 | 6.0 | 1464000 | 2.8670 |
|
233 |
+
| 2.8349 | 6.03 | 1472000 | 2.8555 |
|
234 |
+
| 2.8349 | 6.06 | 1480000 | 2.8778 |
|
235 |
+
| 2.8395 | 6.1 | 1488000 | 2.8753 |
|
236 |
+
| 2.8395 | 6.13 | 1496000 | 2.8657 |
|
237 |
+
| 2.8364 | 6.16 | 1504000 | 2.8644 |
|
238 |
+
| 2.8364 | 6.2 | 1512000 | 2.8669 |
|
239 |
+
| 2.85 | 6.23 | 1520000 | 2.8636 |
|
240 |
+
| 2.85 | 6.26 | 1528000 | 2.8680 |
|
241 |
+
| 2.8359 | 6.29 | 1536000 | 2.8752 |
|
242 |
+
| 2.8359 | 6.33 | 1544000 | 2.8710 |
|
243 |
+
| 2.8451 | 6.36 | 1552000 | 2.8767 |
|
244 |
+
| 2.8451 | 6.39 | 1560000 | 2.8824 |
|
245 |
+
| 2.8359 | 6.43 | 1568000 | 2.8723 |
|
246 |
+
| 2.8359 | 6.46 | 1576000 | 2.8773 |
|
247 |
+
| 2.8546 | 6.49 | 1584000 | 2.8759 |
|
248 |
+
| 2.8546 | 6.52 | 1592000 | 2.8732 |
|
249 |
+
| 2.8395 | 6.56 | 1600000 | 2.8803 |
|
250 |
+
| 2.8395 | 6.59 | 1608000 | 2.8761 |
|
251 |
+
| 2.847 | 6.62 | 1616000 | 2.8801 |
|
252 |
+
| 2.847 | 6.65 | 1624000 | 2.8737 |
|
253 |
+
| 2.8555 | 6.69 | 1632000 | 2.8797 |
|
254 |
+
| 2.8555 | 6.72 | 1640000 | 2.8782 |
|
255 |
+
| 2.8377 | 6.75 | 1648000 | 2.8826 |
|
256 |
+
| 2.8377 | 6.79 | 1656000 | 2.8798 |
|
257 |
+
| 2.8517 | 6.82 | 1664000 | 2.8799 |
|
258 |
+
| 2.8517 | 6.85 | 1672000 | 2.8835 |
|
259 |
+
| 2.8526 | 6.88 | 1680000 | 2.8875 |
|
260 |
+
| 2.8526 | 6.92 | 1688000 | 2.8829 |
|
261 |
+
| 2.8511 | 6.95 | 1696000 | 2.8908 |
|
262 |
+
| 2.8511 | 6.98 | 1704000 | 2.8756 |
|
263 |
+
| 2.8606 | 7.02 | 1712000 | 2.8827 |
|
264 |
+
| 2.8606 | 7.05 | 1720000 | 2.8844 |
|
265 |
+
| 2.852 | 7.08 | 1728000 | 2.8865 |
|
266 |
+
| 2.852 | 7.11 | 1736000 | 2.8910 |
|
267 |
+
| 2.8319 | 7.15 | 1744000 | 2.8848 |
|
268 |
+
| 2.8319 | 7.18 | 1752000 | 2.8916 |
|
269 |
+
| 2.842 | 7.21 | 1760000 | 2.8830 |
|
270 |
+
| 2.842 | 7.24 | 1768000 | 2.8850 |
|
271 |
+
| 2.8421 | 7.28 | 1776000 | 2.8753 |
|
272 |
+
| 2.8421 | 7.31 | 1784000 | 2.8958 |
|
273 |
+
| 2.8558 | 7.34 | 1792000 | 2.8713 |
|
274 |
+
| 2.8558 | 7.38 | 1800000 | 2.8744 |
|
275 |
+
| 2.8382 | 7.41 | 1808000 | 2.8908 |
|
276 |
+
| 2.8382 | 7.44 | 1816000 | 2.8749 |
|
277 |
+
| 2.8508 | 7.47 | 1824000 | 2.8790 |
|
278 |
+
| 2.8508 | 7.51 | 1832000 | 2.8866 |
|
279 |
+
| 2.8477 | 7.54 | 1840000 | 2.8806 |
|
280 |
+
| 2.8477 | 7.57 | 1848000 | 2.8821 |
|
281 |
+
| 2.8497 | 7.61 | 1856000 | 2.8770 |
|
282 |
+
| 2.8497 | 7.64 | 1864000 | 2.8732 |
|
283 |
+
| 2.8566 | 7.67 | 1872000 | 2.8879 |
|
284 |
+
| 2.8566 | 7.7 | 1880000 | 2.8760 |
|
285 |
+
| 2.8527 | 7.74 | 1888000 | 2.8764 |
|
286 |
+
| 2.8527 | 7.77 | 1896000 | 2.8838 |
|
287 |
+
| 2.8438 | 7.8 | 1904000 | 2.8955 |
|
288 |
+
| 2.8438 | 7.83 | 1912000 | 2.8892 |
|
289 |
+
| 2.8422 | 7.87 | 1920000 | 2.8837 |
|
290 |
+
| 2.8422 | 7.9 | 1928000 | 2.8970 |
|
291 |
+
| 2.8521 | 7.93 | 1936000 | 2.8805 |
|
292 |
+
| 2.8521 | 7.97 | 1944000 | 2.8819 |
|
293 |
+
| 2.8562 | 8.0 | 1952000 | 2.8771 |
|
294 |
+
| 2.8562 | 8.03 | 1960000 | 2.8819 |
|
295 |
+
| 2.8417 | 8.06 | 1968000 | 2.8832 |
|
296 |
+
| 2.8417 | 8.1 | 1976000 | 2.8928 |
|
297 |
+
| 2.8493 | 8.13 | 1984000 | 2.8891 |
|
298 |
+
| 2.8493 | 8.16 | 1992000 | 2.8863 |
|
299 |
+
| 2.8549 | 8.2 | 2000000 | 2.8765 |
|
300 |
+
| 2.8549 | 8.23 | 2008000 | 2.8921 |
|
301 |
+
| 2.8421 | 8.26 | 2016000 | 2.8973 |
|
302 |
+
| 2.8421 | 8.29 | 2024000 | 2.8847 |
|
303 |
+
| 2.8451 | 8.33 | 2032000 | 2.8859 |
|
304 |
+
| 2.8451 | 8.36 | 2040000 | 2.8867 |
|
305 |
+
| 2.8465 | 8.39 | 2048000 | 2.8853 |
|
306 |
+
| 2.8465 | 8.42 | 2056000 | 2.8853 |
|
307 |
+
| 2.8516 | 8.46 | 2064000 | 2.8797 |
|
308 |
+
| 2.8516 | 8.49 | 2072000 | 2.8825 |
|
309 |
+
| 2.8519 | 8.52 | 2080000 | 2.8863 |
|
310 |
+
| 2.8519 | 8.56 | 2088000 | 2.8823 |
|
311 |
+
| 2.8454 | 8.59 | 2096000 | 2.8870 |
|
312 |
+
| 2.8454 | 8.62 | 2104000 | 2.8898 |
|
313 |
+
| 2.8428 | 8.65 | 2112000 | 2.8754 |
|
314 |
+
| 2.8428 | 8.69 | 2120000 | 2.8772 |
|
315 |
+
| 2.85 | 8.72 | 2128000 | 2.8816 |
|
316 |
+
| 2.85 | 8.75 | 2136000 | 2.8723 |
|
317 |
+
| 2.8482 | 8.79 | 2144000 | 2.8834 |
|
318 |
+
| 2.8482 | 8.82 | 2152000 | 2.8784 |
|
319 |
+
| 2.8417 | 8.85 | 2160000 | 2.8759 |
|
320 |
+
| 2.8417 | 8.88 | 2168000 | 2.8817 |
|
321 |
+
| 2.8336 | 8.92 | 2176000 | 2.8811 |
|
322 |
+
| 2.8336 | 8.95 | 2184000 | 2.8727 |
|
323 |
+
| 2.8514 | 8.98 | 2192000 | 2.8894 |
|
324 |
+
| 2.8514 | 9.01 | 2200000 | 2.8751 |
|
325 |
+
| 2.8312 | 9.05 | 2208000 | 2.8780 |
|
326 |
+
| 2.8312 | 9.08 | 2216000 | 2.8863 |
|
327 |
+
| 2.8315 | 9.11 | 2224000 | 2.8812 |
|
328 |
+
| 2.8315 | 9.15 | 2232000 | 2.8715 |
|
329 |
+
| 2.8509 | 9.18 | 2240000 | 2.8908 |
|
330 |
+
| 2.8509 | 9.21 | 2248000 | 2.8808 |
|
331 |
+
| 2.8394 | 9.24 | 2256000 | 2.8802 |
|
332 |
+
| 2.8394 | 9.28 | 2264000 | 2.8692 |
|
333 |
+
| 2.8332 | 9.31 | 2272000 | 2.8712 |
|
334 |
+
| 2.8332 | 9.34 | 2280000 | 2.8688 |
|
335 |
+
| 2.837 | 9.38 | 2288000 | 2.8779 |
|
336 |
+
| 2.837 | 9.41 | 2296000 | 2.8794 |
|
337 |
+
| 2.8344 | 9.44 | 2304000 | 2.8751 |
|
338 |
+
| 2.8344 | 9.47 | 2312000 | 2.8750 |
|
339 |
+
| 2.8376 | 9.51 | 2320000 | 2.8838 |
|
340 |
+
| 2.8376 | 9.54 | 2328000 | 2.8825 |
|
341 |
+
| 2.8329 | 9.57 | 2336000 | 2.8809 |
|
342 |
+
| 2.8329 | 9.6 | 2344000 | 2.8843 |
|
343 |
+
| 2.8264 | 9.64 | 2352000 | 2.8784 |
|
344 |
+
| 2.8264 | 9.67 | 2360000 | 2.8688 |
|
345 |
+
| 2.8317 | 9.7 | 2368000 | 2.8793 |
|
346 |
+
| 2.8317 | 9.74 | 2376000 | 2.8815 |
|
347 |
+
| 2.8328 | 9.77 | 2384000 | 2.8756 |
|
348 |
+
| 2.8328 | 9.8 | 2392000 | 2.8691 |
|
349 |
+
| 2.841 | 9.83 | 2400000 | 2.8674 |
|
350 |
+
|
351 |
+
|
352 |
+
### Framework versions
|
353 |
+
|
354 |
+
- Transformers 4.35.0.dev0
|
355 |
+
- Pytorch 2.0.1+cu117
|
356 |
+
- Datasets 2.14.5
|
357 |
+
- Tokenizers 0.14.0
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498859189
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6409ff7fd2fef5b020d7cfcec7b0cbdf6f296c60afcb6ef39c477d329095ef0f
|
3 |
size 498859189
|