DouglasPontes commited on
Commit
bd5c19c
·
1 Parent(s): 47c1546

Model save

Browse files
Files changed (2) hide show
  1. README.md +357 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: cardiffnlp/twitter-roberta-base-2019-90m
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: 2020-Q1-50p-filtered
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # 2020-Q1-50p-filtered
15
+
16
+ This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 2.8674
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 1e-05
38
+ - train_batch_size: 16
39
+ - eval_batch_size: 16
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1400
44
+ - training_steps: 2400000
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss |
49
+ |:-------------:|:-----:|:-------:|:---------------:|
50
+ | No log | 0.03 | 8000 | 2.6129 |
51
+ | 2.7516 | 0.07 | 16000 | 2.5602 |
52
+ | 2.7516 | 0.1 | 24000 | 2.5610 |
53
+ | 2.6478 | 0.13 | 32000 | 2.5580 |
54
+ | 2.6478 | 0.16 | 40000 | 2.5499 |
55
+ | 2.6344 | 0.2 | 48000 | 2.5423 |
56
+ | 2.6344 | 0.23 | 56000 | 2.5432 |
57
+ | 2.6174 | 0.26 | 64000 | 2.5504 |
58
+ | 2.6174 | 0.3 | 72000 | 2.5349 |
59
+ | 2.5993 | 0.33 | 80000 | 2.5332 |
60
+ | 2.5993 | 0.36 | 88000 | 2.5342 |
61
+ | 2.5948 | 0.39 | 96000 | 2.5297 |
62
+ | 2.5948 | 0.43 | 104000 | 2.5301 |
63
+ | 2.5846 | 0.46 | 112000 | 2.5200 |
64
+ | 2.5846 | 0.49 | 120000 | 2.5175 |
65
+ | 2.5774 | 0.52 | 128000 | 2.5151 |
66
+ | 2.5774 | 0.56 | 136000 | 2.5126 |
67
+ | 2.5584 | 0.59 | 144000 | 2.5007 |
68
+ | 2.5584 | 0.62 | 152000 | 2.5149 |
69
+ | 2.5578 | 0.66 | 160000 | 2.5198 |
70
+ | 2.5578 | 0.69 | 168000 | 2.5137 |
71
+ | 2.5699 | 0.72 | 176000 | 2.5190 |
72
+ | 2.5699 | 0.75 | 184000 | 2.5280 |
73
+ | 2.5648 | 0.79 | 192000 | 2.5205 |
74
+ | 2.5648 | 0.82 | 200000 | 2.5267 |
75
+ | 2.5701 | 0.85 | 208000 | 2.5334 |
76
+ | 2.5701 | 0.89 | 216000 | 2.5360 |
77
+ | 2.5688 | 0.92 | 224000 | 2.5404 |
78
+ | 2.5688 | 0.95 | 232000 | 2.5365 |
79
+ | 2.5788 | 0.98 | 240000 | 2.5485 |
80
+ | 2.5788 | 1.02 | 248000 | 2.5407 |
81
+ | 2.5857 | 1.05 | 256000 | 2.5444 |
82
+ | 2.5857 | 1.08 | 264000 | 2.5507 |
83
+ | 2.576 | 1.11 | 272000 | 2.5567 |
84
+ | 2.576 | 1.15 | 280000 | 2.5561 |
85
+ | 2.5919 | 1.18 | 288000 | 2.5641 |
86
+ | 2.5919 | 1.21 | 296000 | 2.5574 |
87
+ | 2.5893 | 1.25 | 304000 | 2.5563 |
88
+ | 2.5893 | 1.28 | 312000 | 2.5708 |
89
+ | 2.5896 | 1.31 | 320000 | 2.5713 |
90
+ | 2.5896 | 1.34 | 328000 | 2.5756 |
91
+ | 2.6066 | 1.38 | 336000 | 2.5868 |
92
+ | 2.6066 | 1.41 | 344000 | 2.5921 |
93
+ | 2.6121 | 1.44 | 352000 | 2.6053 |
94
+ | 2.6121 | 1.48 | 360000 | 2.6046 |
95
+ | 2.6161 | 1.51 | 368000 | 2.5994 |
96
+ | 2.6161 | 1.54 | 376000 | 2.6035 |
97
+ | 2.6313 | 1.57 | 384000 | 2.6119 |
98
+ | 2.6313 | 1.61 | 392000 | 2.6016 |
99
+ | 2.6342 | 1.64 | 400000 | 2.6207 |
100
+ | 2.6342 | 1.67 | 408000 | 2.6231 |
101
+ | 2.6358 | 1.7 | 416000 | 2.6288 |
102
+ | 2.6358 | 1.74 | 424000 | 2.6335 |
103
+ | 2.6463 | 1.77 | 432000 | 2.6356 |
104
+ | 2.6463 | 1.8 | 440000 | 2.6430 |
105
+ | 2.6561 | 1.84 | 448000 | 2.6440 |
106
+ | 2.6561 | 1.87 | 456000 | 2.6445 |
107
+ | 2.6748 | 1.9 | 464000 | 2.6507 |
108
+ | 2.6748 | 1.93 | 472000 | 2.6547 |
109
+ | 2.6847 | 1.97 | 480000 | 2.6643 |
110
+ | 2.6847 | 2.0 | 488000 | 2.6703 |
111
+ | 2.6772 | 2.03 | 496000 | 2.6747 |
112
+ | 2.6772 | 2.07 | 504000 | 2.6656 |
113
+ | 2.6668 | 2.1 | 512000 | 2.6768 |
114
+ | 2.6668 | 2.13 | 520000 | 2.6692 |
115
+ | 2.6802 | 2.16 | 528000 | 2.6730 |
116
+ | 2.6802 | 2.2 | 536000 | 2.6746 |
117
+ | 2.6856 | 2.23 | 544000 | 2.6787 |
118
+ | 2.6856 | 2.26 | 552000 | 2.6778 |
119
+ | 2.6874 | 2.29 | 560000 | 2.6909 |
120
+ | 2.6874 | 2.33 | 568000 | 2.6919 |
121
+ | 2.6956 | 2.36 | 576000 | 2.6947 |
122
+ | 2.6956 | 2.39 | 584000 | 2.7032 |
123
+ | 2.7081 | 2.43 | 592000 | 2.7079 |
124
+ | 2.7081 | 2.46 | 600000 | 2.7103 |
125
+ | 2.7124 | 2.49 | 608000 | 2.7139 |
126
+ | 2.7124 | 2.52 | 616000 | 2.7109 |
127
+ | 2.7221 | 2.56 | 624000 | 2.7153 |
128
+ | 2.7221 | 2.59 | 632000 | 2.7359 |
129
+ | 2.7131 | 2.62 | 640000 | 2.7279 |
130
+ | 2.7131 | 2.66 | 648000 | 2.7378 |
131
+ | 2.7268 | 2.69 | 656000 | 2.7380 |
132
+ | 2.7268 | 2.72 | 664000 | 2.7275 |
133
+ | 2.7373 | 2.75 | 672000 | 2.7440 |
134
+ | 2.7373 | 2.79 | 680000 | 2.7382 |
135
+ | 2.7576 | 2.82 | 688000 | 2.7430 |
136
+ | 2.7576 | 2.85 | 696000 | 2.7421 |
137
+ | 2.7495 | 2.88 | 704000 | 2.7519 |
138
+ | 2.7495 | 2.92 | 712000 | 2.7494 |
139
+ | 2.7626 | 2.95 | 720000 | 2.7541 |
140
+ | 2.7626 | 2.98 | 728000 | 2.7497 |
141
+ | 2.7551 | 3.02 | 736000 | 2.7625 |
142
+ | 2.7551 | 3.05 | 744000 | 2.7649 |
143
+ | 2.7606 | 3.08 | 752000 | 2.7590 |
144
+ | 2.7606 | 3.11 | 760000 | 2.7598 |
145
+ | 2.7709 | 3.15 | 768000 | 2.7686 |
146
+ | 2.7709 | 3.18 | 776000 | 2.7697 |
147
+ | 2.7687 | 3.21 | 784000 | 2.7807 |
148
+ | 2.7687 | 3.25 | 792000 | 2.7830 |
149
+ | 2.7745 | 3.28 | 800000 | 2.7677 |
150
+ | 2.7745 | 3.31 | 808000 | 2.7897 |
151
+ | 2.7596 | 3.34 | 816000 | 2.7825 |
152
+ | 2.7596 | 3.38 | 824000 | 2.7829 |
153
+ | 2.7749 | 3.41 | 832000 | 2.7868 |
154
+ | 2.7749 | 3.44 | 840000 | 2.7875 |
155
+ | 2.7788 | 3.47 | 848000 | 2.7907 |
156
+ | 2.7788 | 3.51 | 856000 | 2.7916 |
157
+ | 2.7792 | 3.54 | 864000 | 2.7935 |
158
+ | 2.7792 | 3.57 | 872000 | 2.7893 |
159
+ | 2.7871 | 3.61 | 880000 | 2.8003 |
160
+ | 2.7871 | 3.64 | 888000 | 2.7973 |
161
+ | 2.7967 | 3.67 | 896000 | 2.8102 |
162
+ | 2.7967 | 3.7 | 904000 | 2.8118 |
163
+ | 2.7896 | 3.74 | 912000 | 2.8059 |
164
+ | 2.7896 | 3.77 | 920000 | 2.8135 |
165
+ | 2.8021 | 3.8 | 928000 | 2.8108 |
166
+ | 2.8021 | 3.84 | 936000 | 2.8164 |
167
+ | 2.7931 | 3.87 | 944000 | 2.8173 |
168
+ | 2.7931 | 3.9 | 952000 | 2.8295 |
169
+ | 2.8105 | 3.93 | 960000 | 2.8248 |
170
+ | 2.8105 | 3.97 | 968000 | 2.8123 |
171
+ | 2.805 | 4.0 | 976000 | 2.8295 |
172
+ | 2.805 | 4.03 | 984000 | 2.8287 |
173
+ | 2.7959 | 4.06 | 992000 | 2.8266 |
174
+ | 2.7959 | 4.1 | 1000000 | 2.8445 |
175
+ | 2.8126 | 4.13 | 1008000 | 2.8260 |
176
+ | 2.8126 | 4.16 | 1016000 | 2.8294 |
177
+ | 2.8085 | 4.2 | 1024000 | 2.8394 |
178
+ | 2.8085 | 4.23 | 1032000 | 2.8360 |
179
+ | 2.8179 | 4.26 | 1040000 | 2.8394 |
180
+ | 2.8179 | 4.29 | 1048000 | 2.8409 |
181
+ | 2.8212 | 4.33 | 1056000 | 2.8342 |
182
+ | 2.8212 | 4.36 | 1064000 | 2.8416 |
183
+ | 2.8236 | 4.39 | 1072000 | 2.8393 |
184
+ | 2.8236 | 4.43 | 1080000 | 2.8459 |
185
+ | 2.8134 | 4.46 | 1088000 | 2.8444 |
186
+ | 2.8134 | 4.49 | 1096000 | 2.8435 |
187
+ | 2.8196 | 4.52 | 1104000 | 2.8484 |
188
+ | 2.8196 | 4.56 | 1112000 | 2.8537 |
189
+ | 2.8284 | 4.59 | 1120000 | 2.8541 |
190
+ | 2.8284 | 4.62 | 1128000 | 2.8401 |
191
+ | 2.8349 | 4.65 | 1136000 | 2.8476 |
192
+ | 2.8349 | 4.69 | 1144000 | 2.8476 |
193
+ | 2.8171 | 4.72 | 1152000 | 2.8438 |
194
+ | 2.8171 | 4.75 | 1160000 | 2.8535 |
195
+ | 2.8264 | 4.79 | 1168000 | 2.8428 |
196
+ | 2.8264 | 4.82 | 1176000 | 2.8552 |
197
+ | 2.8335 | 4.85 | 1184000 | 2.8573 |
198
+ | 2.8335 | 4.88 | 1192000 | 2.8505 |
199
+ | 2.8351 | 4.92 | 1200000 | 2.8512 |
200
+ | 2.8351 | 4.95 | 1208000 | 2.8500 |
201
+ | 2.8366 | 4.98 | 1216000 | 2.8570 |
202
+ | 2.8366 | 5.02 | 1224000 | 2.8470 |
203
+ | 2.8257 | 5.05 | 1232000 | 2.8638 |
204
+ | 2.8257 | 5.08 | 1240000 | 2.8512 |
205
+ | 2.8351 | 5.11 | 1248000 | 2.8641 |
206
+ | 2.8351 | 5.15 | 1256000 | 2.8680 |
207
+ | 2.8272 | 5.18 | 1264000 | 2.8521 |
208
+ | 2.8272 | 5.21 | 1272000 | 2.8616 |
209
+ | 2.8346 | 5.24 | 1280000 | 2.8545 |
210
+ | 2.8346 | 5.28 | 1288000 | 2.8477 |
211
+ | 2.8211 | 5.31 | 1296000 | 2.8602 |
212
+ | 2.8211 | 5.34 | 1304000 | 2.8574 |
213
+ | 2.8302 | 5.38 | 1312000 | 2.8490 |
214
+ | 2.8302 | 5.41 | 1320000 | 2.8547 |
215
+ | 2.8317 | 5.44 | 1328000 | 2.8536 |
216
+ | 2.8317 | 5.47 | 1336000 | 2.8553 |
217
+ | 2.83 | 5.51 | 1344000 | 2.8536 |
218
+ | 2.83 | 5.54 | 1352000 | 2.8565 |
219
+ | 2.8347 | 5.57 | 1360000 | 2.8445 |
220
+ | 2.8347 | 5.61 | 1368000 | 2.8540 |
221
+ | 2.8253 | 5.64 | 1376000 | 2.8630 |
222
+ | 2.8253 | 5.67 | 1384000 | 2.8592 |
223
+ | 2.8237 | 5.7 | 1392000 | 2.8635 |
224
+ | 2.8237 | 5.74 | 1400000 | 2.8621 |
225
+ | 2.8364 | 5.77 | 1408000 | 2.8545 |
226
+ | 2.8364 | 5.8 | 1416000 | 2.8682 |
227
+ | 2.8289 | 5.84 | 1424000 | 2.8675 |
228
+ | 2.8289 | 5.87 | 1432000 | 2.8597 |
229
+ | 2.8327 | 5.9 | 1440000 | 2.8728 |
230
+ | 2.8327 | 5.93 | 1448000 | 2.8644 |
231
+ | 2.8407 | 5.97 | 1456000 | 2.8640 |
232
+ | 2.8407 | 6.0 | 1464000 | 2.8670 |
233
+ | 2.8349 | 6.03 | 1472000 | 2.8555 |
234
+ | 2.8349 | 6.06 | 1480000 | 2.8778 |
235
+ | 2.8395 | 6.1 | 1488000 | 2.8753 |
236
+ | 2.8395 | 6.13 | 1496000 | 2.8657 |
237
+ | 2.8364 | 6.16 | 1504000 | 2.8644 |
238
+ | 2.8364 | 6.2 | 1512000 | 2.8669 |
239
+ | 2.85 | 6.23 | 1520000 | 2.8636 |
240
+ | 2.85 | 6.26 | 1528000 | 2.8680 |
241
+ | 2.8359 | 6.29 | 1536000 | 2.8752 |
242
+ | 2.8359 | 6.33 | 1544000 | 2.8710 |
243
+ | 2.8451 | 6.36 | 1552000 | 2.8767 |
244
+ | 2.8451 | 6.39 | 1560000 | 2.8824 |
245
+ | 2.8359 | 6.43 | 1568000 | 2.8723 |
246
+ | 2.8359 | 6.46 | 1576000 | 2.8773 |
247
+ | 2.8546 | 6.49 | 1584000 | 2.8759 |
248
+ | 2.8546 | 6.52 | 1592000 | 2.8732 |
249
+ | 2.8395 | 6.56 | 1600000 | 2.8803 |
250
+ | 2.8395 | 6.59 | 1608000 | 2.8761 |
251
+ | 2.847 | 6.62 | 1616000 | 2.8801 |
252
+ | 2.847 | 6.65 | 1624000 | 2.8737 |
253
+ | 2.8555 | 6.69 | 1632000 | 2.8797 |
254
+ | 2.8555 | 6.72 | 1640000 | 2.8782 |
255
+ | 2.8377 | 6.75 | 1648000 | 2.8826 |
256
+ | 2.8377 | 6.79 | 1656000 | 2.8798 |
257
+ | 2.8517 | 6.82 | 1664000 | 2.8799 |
258
+ | 2.8517 | 6.85 | 1672000 | 2.8835 |
259
+ | 2.8526 | 6.88 | 1680000 | 2.8875 |
260
+ | 2.8526 | 6.92 | 1688000 | 2.8829 |
261
+ | 2.8511 | 6.95 | 1696000 | 2.8908 |
262
+ | 2.8511 | 6.98 | 1704000 | 2.8756 |
263
+ | 2.8606 | 7.02 | 1712000 | 2.8827 |
264
+ | 2.8606 | 7.05 | 1720000 | 2.8844 |
265
+ | 2.852 | 7.08 | 1728000 | 2.8865 |
266
+ | 2.852 | 7.11 | 1736000 | 2.8910 |
267
+ | 2.8319 | 7.15 | 1744000 | 2.8848 |
268
+ | 2.8319 | 7.18 | 1752000 | 2.8916 |
269
+ | 2.842 | 7.21 | 1760000 | 2.8830 |
270
+ | 2.842 | 7.24 | 1768000 | 2.8850 |
271
+ | 2.8421 | 7.28 | 1776000 | 2.8753 |
272
+ | 2.8421 | 7.31 | 1784000 | 2.8958 |
273
+ | 2.8558 | 7.34 | 1792000 | 2.8713 |
274
+ | 2.8558 | 7.38 | 1800000 | 2.8744 |
275
+ | 2.8382 | 7.41 | 1808000 | 2.8908 |
276
+ | 2.8382 | 7.44 | 1816000 | 2.8749 |
277
+ | 2.8508 | 7.47 | 1824000 | 2.8790 |
278
+ | 2.8508 | 7.51 | 1832000 | 2.8866 |
279
+ | 2.8477 | 7.54 | 1840000 | 2.8806 |
280
+ | 2.8477 | 7.57 | 1848000 | 2.8821 |
281
+ | 2.8497 | 7.61 | 1856000 | 2.8770 |
282
+ | 2.8497 | 7.64 | 1864000 | 2.8732 |
283
+ | 2.8566 | 7.67 | 1872000 | 2.8879 |
284
+ | 2.8566 | 7.7 | 1880000 | 2.8760 |
285
+ | 2.8527 | 7.74 | 1888000 | 2.8764 |
286
+ | 2.8527 | 7.77 | 1896000 | 2.8838 |
287
+ | 2.8438 | 7.8 | 1904000 | 2.8955 |
288
+ | 2.8438 | 7.83 | 1912000 | 2.8892 |
289
+ | 2.8422 | 7.87 | 1920000 | 2.8837 |
290
+ | 2.8422 | 7.9 | 1928000 | 2.8970 |
291
+ | 2.8521 | 7.93 | 1936000 | 2.8805 |
292
+ | 2.8521 | 7.97 | 1944000 | 2.8819 |
293
+ | 2.8562 | 8.0 | 1952000 | 2.8771 |
294
+ | 2.8562 | 8.03 | 1960000 | 2.8819 |
295
+ | 2.8417 | 8.06 | 1968000 | 2.8832 |
296
+ | 2.8417 | 8.1 | 1976000 | 2.8928 |
297
+ | 2.8493 | 8.13 | 1984000 | 2.8891 |
298
+ | 2.8493 | 8.16 | 1992000 | 2.8863 |
299
+ | 2.8549 | 8.2 | 2000000 | 2.8765 |
300
+ | 2.8549 | 8.23 | 2008000 | 2.8921 |
301
+ | 2.8421 | 8.26 | 2016000 | 2.8973 |
302
+ | 2.8421 | 8.29 | 2024000 | 2.8847 |
303
+ | 2.8451 | 8.33 | 2032000 | 2.8859 |
304
+ | 2.8451 | 8.36 | 2040000 | 2.8867 |
305
+ | 2.8465 | 8.39 | 2048000 | 2.8853 |
306
+ | 2.8465 | 8.42 | 2056000 | 2.8853 |
307
+ | 2.8516 | 8.46 | 2064000 | 2.8797 |
308
+ | 2.8516 | 8.49 | 2072000 | 2.8825 |
309
+ | 2.8519 | 8.52 | 2080000 | 2.8863 |
310
+ | 2.8519 | 8.56 | 2088000 | 2.8823 |
311
+ | 2.8454 | 8.59 | 2096000 | 2.8870 |
312
+ | 2.8454 | 8.62 | 2104000 | 2.8898 |
313
+ | 2.8428 | 8.65 | 2112000 | 2.8754 |
314
+ | 2.8428 | 8.69 | 2120000 | 2.8772 |
315
+ | 2.85 | 8.72 | 2128000 | 2.8816 |
316
+ | 2.85 | 8.75 | 2136000 | 2.8723 |
317
+ | 2.8482 | 8.79 | 2144000 | 2.8834 |
318
+ | 2.8482 | 8.82 | 2152000 | 2.8784 |
319
+ | 2.8417 | 8.85 | 2160000 | 2.8759 |
320
+ | 2.8417 | 8.88 | 2168000 | 2.8817 |
321
+ | 2.8336 | 8.92 | 2176000 | 2.8811 |
322
+ | 2.8336 | 8.95 | 2184000 | 2.8727 |
323
+ | 2.8514 | 8.98 | 2192000 | 2.8894 |
324
+ | 2.8514 | 9.01 | 2200000 | 2.8751 |
325
+ | 2.8312 | 9.05 | 2208000 | 2.8780 |
326
+ | 2.8312 | 9.08 | 2216000 | 2.8863 |
327
+ | 2.8315 | 9.11 | 2224000 | 2.8812 |
328
+ | 2.8315 | 9.15 | 2232000 | 2.8715 |
329
+ | 2.8509 | 9.18 | 2240000 | 2.8908 |
330
+ | 2.8509 | 9.21 | 2248000 | 2.8808 |
331
+ | 2.8394 | 9.24 | 2256000 | 2.8802 |
332
+ | 2.8394 | 9.28 | 2264000 | 2.8692 |
333
+ | 2.8332 | 9.31 | 2272000 | 2.8712 |
334
+ | 2.8332 | 9.34 | 2280000 | 2.8688 |
335
+ | 2.837 | 9.38 | 2288000 | 2.8779 |
336
+ | 2.837 | 9.41 | 2296000 | 2.8794 |
337
+ | 2.8344 | 9.44 | 2304000 | 2.8751 |
338
+ | 2.8344 | 9.47 | 2312000 | 2.8750 |
339
+ | 2.8376 | 9.51 | 2320000 | 2.8838 |
340
+ | 2.8376 | 9.54 | 2328000 | 2.8825 |
341
+ | 2.8329 | 9.57 | 2336000 | 2.8809 |
342
+ | 2.8329 | 9.6 | 2344000 | 2.8843 |
343
+ | 2.8264 | 9.64 | 2352000 | 2.8784 |
344
+ | 2.8264 | 9.67 | 2360000 | 2.8688 |
345
+ | 2.8317 | 9.7 | 2368000 | 2.8793 |
346
+ | 2.8317 | 9.74 | 2376000 | 2.8815 |
347
+ | 2.8328 | 9.77 | 2384000 | 2.8756 |
348
+ | 2.8328 | 9.8 | 2392000 | 2.8691 |
349
+ | 2.841 | 9.83 | 2400000 | 2.8674 |
350
+
351
+
352
+ ### Framework versions
353
+
354
+ - Transformers 4.35.0.dev0
355
+ - Pytorch 2.0.1+cu117
356
+ - Datasets 2.14.5
357
+ - Tokenizers 0.14.0
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5650570ecba20bc4f491f9e4d053becde3108b71db91d90448080e6e310832fd
3
  size 498859189
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6409ff7fd2fef5b020d7cfcec7b0cbdf6f296c60afcb6ef39c477d329095ef0f
3
  size 498859189