DouglasPontes
commited on
Commit
•
c807113
1
Parent(s):
5727dd5
Model save
Browse files- README.md +306 -305
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -1,20 +1,21 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
-
- name: 2020-Q2-
|
7 |
results: []
|
8 |
---
|
9 |
|
10 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
should probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
-
# 2020-Q2-
|
14 |
|
15 |
-
This model is a fine-tuned version of [
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss:
|
18 |
|
19 |
## Model description
|
20 |
|
@@ -45,306 +46,306 @@ The following hyperparameters were used during training:
|
|
45 |
|
46 |
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
|:-------------:|:-----:|:-------:|:---------------:|
|
48 |
-
| No log | 0.
|
49 |
-
| 2.
|
50 |
-
| 2.
|
51 |
-
| 2.
|
52 |
-
| 2.
|
53 |
-
| 2.
|
54 |
-
| 2.
|
55 |
-
| 2.
|
56 |
-
| 2.
|
57 |
-
| 2.
|
58 |
-
| 2.
|
59 |
-
| 2.
|
60 |
-
| 2.
|
61 |
-
| 2.
|
62 |
-
| 2.
|
63 |
-
| 2.
|
64 |
-
| 2.
|
65 |
-
| 2.
|
66 |
-
| 2.
|
67 |
-
| 2.
|
68 |
-
| 2.
|
69 |
-
| 2.
|
70 |
-
| 2.
|
71 |
-
| 2.
|
72 |
-
| 2.
|
73 |
-
| 2.
|
74 |
-
| 2.
|
75 |
-
| 2.
|
76 |
-
| 2.
|
77 |
-
| 2.
|
78 |
-
| 2.
|
79 |
-
| 2.
|
80 |
-
| 2.
|
81 |
-
| 2.
|
82 |
-
| 2.
|
83 |
-
| 2.
|
84 |
-
| 2.
|
85 |
-
| 2.
|
86 |
-
| 2.
|
87 |
-
| 2.
|
88 |
-
| 2.
|
89 |
-
| 2.
|
90 |
-
| 2.
|
91 |
-
| 2.
|
92 |
-
| 2.
|
93 |
-
| 2.
|
94 |
-
| 2.
|
95 |
-
| 2.
|
96 |
-
| 2.
|
97 |
-
| 2.
|
98 |
-
| 2.
|
99 |
-
| 2.
|
100 |
-
| 2.
|
101 |
-
| 2.
|
102 |
-
| 2.
|
103 |
-
| 2.
|
104 |
-
| 2.
|
105 |
-
| 2.
|
106 |
-
| 2.
|
107 |
-
| 2.
|
108 |
-
| 2.
|
109 |
-
| 2.
|
110 |
-
| 2.
|
111 |
-
| 2.
|
112 |
-
| 2.
|
113 |
-
| 2.
|
114 |
-
| 2.
|
115 |
-
| 2.
|
116 |
-
| 2.
|
117 |
-
| 2.
|
118 |
-
| 2.
|
119 |
-
| 2.
|
120 |
-
| 2.
|
121 |
-
| 2.
|
122 |
-
| 2.
|
123 |
-
| 2.
|
124 |
-
| 2.
|
125 |
-
| 2.
|
126 |
-
| 2.
|
127 |
-
| 2.
|
128 |
-
| 2.
|
129 |
-
| 2.
|
130 |
-
| 2.
|
131 |
-
| 2.
|
132 |
-
| 2.
|
133 |
-
| 2.
|
134 |
-
| 2.
|
135 |
-
| 2.
|
136 |
-
| 2.
|
137 |
-
| 2.
|
138 |
-
| 2.
|
139 |
-
| 2.
|
140 |
-
| 2.
|
141 |
-
| 2.
|
142 |
-
| 2.
|
143 |
-
| 2.
|
144 |
-
| 2.
|
145 |
-
| 2.
|
146 |
-
| 2.
|
147 |
-
| 2.
|
148 |
-
| 2.
|
149 |
-
| 2.
|
150 |
-
| 2.
|
151 |
-
| 2.
|
152 |
-
| 2.
|
153 |
-
| 2.
|
154 |
-
| 2.
|
155 |
-
| 2.
|
156 |
-
| 2.
|
157 |
-
| 2.
|
158 |
-
| 2.
|
159 |
-
| 2.
|
160 |
-
| 2.
|
161 |
-
| 2.
|
162 |
-
| 2.
|
163 |
-
| 2.
|
164 |
-
| 2.
|
165 |
-
| 2.
|
166 |
-
| 2.
|
167 |
-
| 2.
|
168 |
-
| 2.
|
169 |
-
| 2.
|
170 |
-
| 2.
|
171 |
-
| 2.
|
172 |
-
| 2.
|
173 |
-
| 2.
|
174 |
-
| 2.
|
175 |
-
| 2.
|
176 |
-
| 2.
|
177 |
-
| 2.
|
178 |
-
| 2.
|
179 |
-
| 2.
|
180 |
-
| 2.
|
181 |
-
| 2.
|
182 |
-
| 2.
|
183 |
-
| 2.
|
184 |
-
| 2.
|
185 |
-
| 2.
|
186 |
-
| 2.
|
187 |
-
| 2.
|
188 |
-
| 2.
|
189 |
-
| 2.
|
190 |
-
| 2.
|
191 |
-
| 2.
|
192 |
-
| 2.
|
193 |
-
| 2.
|
194 |
-
| 2.
|
195 |
-
| 2.
|
196 |
-
| 2.
|
197 |
-
| 2.
|
198 |
-
| 2.
|
199 |
-
| 2.
|
200 |
-
| 2.
|
201 |
-
| 2.
|
202 |
-
| 2.
|
203 |
-
| 2.
|
204 |
-
| 2.
|
205 |
-
| 2.
|
206 |
-
| 2.
|
207 |
-
| 2.
|
208 |
-
| 2.
|
209 |
-
| 2.
|
210 |
-
| 2.
|
211 |
-
| 2.
|
212 |
-
| 2.
|
213 |
-
| 2.
|
214 |
-
| 2.
|
215 |
-
| 2.
|
216 |
-
| 2.
|
217 |
-
| 2.
|
218 |
-
| 2.
|
219 |
-
| 2.
|
220 |
-
| 2.
|
221 |
-
| 2.
|
222 |
-
| 2.
|
223 |
-
| 2.
|
224 |
-
| 2.
|
225 |
-
| 2.
|
226 |
-
| 2.
|
227 |
-
| 2.
|
228 |
-
| 2.
|
229 |
-
| 2.
|
230 |
-
| 2.
|
231 |
-
| 2.
|
232 |
-
| 2.
|
233 |
-
| 2.
|
234 |
-
| 2.
|
235 |
-
| 2.
|
236 |
-
| 2.
|
237 |
-
| 2.
|
238 |
-
| 2.
|
239 |
-
| 2.
|
240 |
-
| 2.
|
241 |
-
| 2.
|
242 |
-
| 2.
|
243 |
-
| 2.
|
244 |
-
| 2.
|
245 |
-
| 2.
|
246 |
-
| 2.
|
247 |
-
| 2.
|
248 |
-
| 2.
|
249 |
-
| 2.
|
250 |
-
| 2.
|
251 |
-
| 2.
|
252 |
-
| 2.
|
253 |
-
| 2.
|
254 |
-
| 2.
|
255 |
-
| 2.
|
256 |
-
| 2.
|
257 |
-
| 2.
|
258 |
-
| 2.
|
259 |
-
| 2.
|
260 |
-
| 2.
|
261 |
-
| 2.
|
262 |
-
| 2.
|
263 |
-
| 2.
|
264 |
-
| 2.
|
265 |
-
| 2.
|
266 |
-
| 2.
|
267 |
-
| 2.
|
268 |
-
| 2.
|
269 |
-
| 2.
|
270 |
-
| 2.
|
271 |
-
| 2.
|
272 |
-
| 2.
|
273 |
-
| 2.
|
274 |
-
| 2.
|
275 |
-
| 2.
|
276 |
-
| 2.
|
277 |
-
| 2.
|
278 |
-
| 2.
|
279 |
-
| 2.
|
280 |
-
| 2.
|
281 |
-
| 2.
|
282 |
-
| 2.
|
283 |
-
| 2.
|
284 |
-
| 2.
|
285 |
-
| 2.
|
286 |
-
| 2.
|
287 |
-
| 2.
|
288 |
-
| 2.
|
289 |
-
| 2.
|
290 |
-
| 2.
|
291 |
-
| 2.
|
292 |
-
| 2.
|
293 |
-
| 2.
|
294 |
-
| 2.
|
295 |
-
| 2.
|
296 |
-
| 2.
|
297 |
-
| 2.
|
298 |
-
| 2.
|
299 |
-
| 2.
|
300 |
-
| 2.
|
301 |
-
| 2.
|
302 |
-
| 2.
|
303 |
-
| 2.
|
304 |
-
| 2.
|
305 |
-
| 2.
|
306 |
-
| 2.
|
307 |
-
| 2.
|
308 |
-
| 2.
|
309 |
-
| 2.
|
310 |
-
| 2.
|
311 |
-
| 2.
|
312 |
-
| 2.
|
313 |
-
| 2.
|
314 |
-
| 2.
|
315 |
-
| 2.
|
316 |
-
| 2.
|
317 |
-
| 2.
|
318 |
-
| 2.
|
319 |
-
| 2.
|
320 |
-
| 2.
|
321 |
-
| 2.
|
322 |
-
| 2.
|
323 |
-
| 2.
|
324 |
-
| 2.
|
325 |
-
| 2.
|
326 |
-
| 2.
|
327 |
-
| 2.
|
328 |
-
| 2.
|
329 |
-
| 2.
|
330 |
-
| 2.
|
331 |
-
| 2.
|
332 |
-
| 2.
|
333 |
-
| 2.
|
334 |
-
| 2.
|
335 |
-
| 2.
|
336 |
-
| 2.
|
337 |
-
| 2.
|
338 |
-
| 2.
|
339 |
-
| 2.
|
340 |
-
| 2.
|
341 |
-
| 2.
|
342 |
-
| 2.
|
343 |
-
| 2.
|
344 |
-
| 2.
|
345 |
-
| 2.
|
346 |
-
| 2.
|
347 |
-
| 2.
|
348 |
|
349 |
|
350 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: cardiffnlp/twitter-roberta-base-2019-90m
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
7 |
+
- name: 2020-Q2-full_tweets_combined90
|
8 |
results: []
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
+
# 2020-Q2-full_tweets_combined90
|
15 |
|
16 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.9349
|
19 |
|
20 |
## Model description
|
21 |
|
|
|
46 |
|
47 |
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
|:-------------:|:-----:|:-------:|:---------------:|
|
49 |
+
| No log | 0.02 | 8000 | 2.2220 |
|
50 |
+
| 2.4154 | 0.03 | 16000 | 2.1427 |
|
51 |
+
| 2.4154 | 0.05 | 24000 | 2.1028 |
|
52 |
+
| 2.2273 | 0.07 | 32000 | 2.0824 |
|
53 |
+
| 2.2273 | 0.08 | 40000 | 2.0645 |
|
54 |
+
| 2.1774 | 0.1 | 48000 | 2.0478 |
|
55 |
+
| 2.1774 | 0.12 | 56000 | 2.0327 |
|
56 |
+
| 2.1569 | 0.13 | 64000 | 2.0248 |
|
57 |
+
| 2.1569 | 0.15 | 72000 | 2.0209 |
|
58 |
+
| 2.1439 | 0.17 | 80000 | 2.0049 |
|
59 |
+
| 2.1439 | 0.19 | 88000 | 2.0113 |
|
60 |
+
| 2.1271 | 0.2 | 96000 | 2.0038 |
|
61 |
+
| 2.1271 | 0.22 | 104000 | 2.0065 |
|
62 |
+
| 2.1211 | 0.24 | 112000 | 1.9987 |
|
63 |
+
| 2.1211 | 0.25 | 120000 | 1.9929 |
|
64 |
+
| 2.1194 | 0.27 | 128000 | 1.9922 |
|
65 |
+
| 2.1194 | 0.29 | 136000 | 1.9917 |
|
66 |
+
| 2.1118 | 0.3 | 144000 | 1.9885 |
|
67 |
+
| 2.1118 | 0.32 | 152000 | 1.9870 |
|
68 |
+
| 2.1047 | 0.34 | 160000 | 1.9843 |
|
69 |
+
| 2.1047 | 0.35 | 168000 | 1.9827 |
|
70 |
+
| 2.1015 | 0.37 | 176000 | 1.9826 |
|
71 |
+
| 2.1015 | 0.39 | 184000 | 1.9774 |
|
72 |
+
| 2.1042 | 0.4 | 192000 | 1.9771 |
|
73 |
+
| 2.1042 | 0.42 | 200000 | 1.9770 |
|
74 |
+
| 2.0919 | 0.44 | 208000 | 1.9752 |
|
75 |
+
| 2.0919 | 0.45 | 216000 | 1.9775 |
|
76 |
+
| 2.0953 | 0.47 | 224000 | 1.9684 |
|
77 |
+
| 2.0953 | 0.49 | 232000 | 1.9748 |
|
78 |
+
| 2.0848 | 0.51 | 240000 | 1.9714 |
|
79 |
+
| 2.0848 | 0.52 | 248000 | 1.9781 |
|
80 |
+
| 2.0882 | 0.54 | 256000 | 1.9709 |
|
81 |
+
| 2.0882 | 0.56 | 264000 | 1.9660 |
|
82 |
+
| 2.0922 | 0.57 | 272000 | 1.9651 |
|
83 |
+
| 2.0922 | 0.59 | 280000 | 1.9678 |
|
84 |
+
| 2.0938 | 0.61 | 288000 | 1.9667 |
|
85 |
+
| 2.0938 | 0.62 | 296000 | 1.9630 |
|
86 |
+
| 2.095 | 0.64 | 304000 | 1.9642 |
|
87 |
+
| 2.095 | 0.66 | 312000 | 1.9624 |
|
88 |
+
| 2.0908 | 0.67 | 320000 | 1.9603 |
|
89 |
+
| 2.0908 | 0.69 | 328000 | 1.9649 |
|
90 |
+
| 2.0927 | 0.71 | 336000 | 1.9641 |
|
91 |
+
| 2.0927 | 0.72 | 344000 | 1.9603 |
|
92 |
+
| 2.0931 | 0.74 | 352000 | 1.9590 |
|
93 |
+
| 2.0931 | 0.76 | 360000 | 1.9644 |
|
94 |
+
| 2.087 | 0.77 | 368000 | 1.9635 |
|
95 |
+
| 2.087 | 0.79 | 376000 | 1.9614 |
|
96 |
+
| 2.0792 | 0.81 | 384000 | 1.9591 |
|
97 |
+
| 2.0792 | 0.83 | 392000 | 1.9575 |
|
98 |
+
| 2.0899 | 0.84 | 400000 | 1.9592 |
|
99 |
+
| 2.0899 | 0.86 | 408000 | 1.9619 |
|
100 |
+
| 2.0812 | 0.88 | 416000 | 1.9582 |
|
101 |
+
| 2.0812 | 0.89 | 424000 | 1.9580 |
|
102 |
+
| 2.0948 | 0.91 | 432000 | 1.9587 |
|
103 |
+
| 2.0948 | 0.93 | 440000 | 1.9593 |
|
104 |
+
| 2.0895 | 0.94 | 448000 | 1.9608 |
|
105 |
+
| 2.0895 | 0.96 | 456000 | 1.9566 |
|
106 |
+
| 2.0756 | 0.98 | 464000 | 1.9525 |
|
107 |
+
| 2.0756 | 0.99 | 472000 | 1.9541 |
|
108 |
+
| 2.0842 | 1.01 | 480000 | 1.9601 |
|
109 |
+
| 2.0842 | 1.03 | 488000 | 1.9564 |
|
110 |
+
| 2.0935 | 1.04 | 496000 | 1.9522 |
|
111 |
+
| 2.0935 | 1.06 | 504000 | 1.9532 |
|
112 |
+
| 2.0836 | 1.08 | 512000 | 1.9537 |
|
113 |
+
| 2.0836 | 1.09 | 520000 | 1.9553 |
|
114 |
+
| 2.0876 | 1.11 | 528000 | 1.9469 |
|
115 |
+
| 2.0876 | 1.13 | 536000 | 1.9497 |
|
116 |
+
| 2.0778 | 1.15 | 544000 | 1.9542 |
|
117 |
+
| 2.0778 | 1.16 | 552000 | 1.9516 |
|
118 |
+
| 2.0829 | 1.18 | 560000 | 1.9506 |
|
119 |
+
| 2.0829 | 1.2 | 568000 | 1.9505 |
|
120 |
+
| 2.0864 | 1.21 | 576000 | 1.9531 |
|
121 |
+
| 2.0864 | 1.23 | 584000 | 1.9455 |
|
122 |
+
| 2.0893 | 1.25 | 592000 | 1.9471 |
|
123 |
+
| 2.0893 | 1.26 | 600000 | 1.9539 |
|
124 |
+
| 2.0808 | 1.28 | 608000 | 1.9455 |
|
125 |
+
| 2.0808 | 1.3 | 616000 | 1.9497 |
|
126 |
+
| 2.0838 | 1.31 | 624000 | 1.9466 |
|
127 |
+
| 2.0838 | 1.33 | 632000 | 1.9498 |
|
128 |
+
| 2.0812 | 1.35 | 640000 | 1.9510 |
|
129 |
+
| 2.0812 | 1.36 | 648000 | 1.9526 |
|
130 |
+
| 2.0793 | 1.38 | 656000 | 1.9471 |
|
131 |
+
| 2.0793 | 1.4 | 664000 | 1.9469 |
|
132 |
+
| 2.0789 | 1.41 | 672000 | 1.9455 |
|
133 |
+
| 2.0789 | 1.43 | 680000 | 1.9469 |
|
134 |
+
| 2.0883 | 1.45 | 688000 | 1.9439 |
|
135 |
+
| 2.0883 | 1.47 | 696000 | 1.9439 |
|
136 |
+
| 2.09 | 1.48 | 704000 | 1.9416 |
|
137 |
+
| 2.09 | 1.5 | 712000 | 1.9492 |
|
138 |
+
| 2.0845 | 1.52 | 720000 | 1.9430 |
|
139 |
+
| 2.0845 | 1.53 | 728000 | 1.9484 |
|
140 |
+
| 2.0742 | 1.55 | 736000 | 1.9456 |
|
141 |
+
| 2.0742 | 1.57 | 744000 | 1.9380 |
|
142 |
+
| 2.0839 | 1.58 | 752000 | 1.9418 |
|
143 |
+
| 2.0839 | 1.6 | 760000 | 1.9434 |
|
144 |
+
| 2.0806 | 1.62 | 768000 | 1.9450 |
|
145 |
+
| 2.0806 | 1.63 | 776000 | 1.9426 |
|
146 |
+
| 2.0805 | 1.65 | 784000 | 1.9441 |
|
147 |
+
| 2.0805 | 1.67 | 792000 | 1.9459 |
|
148 |
+
| 2.0833 | 1.68 | 800000 | 1.9435 |
|
149 |
+
| 2.0833 | 1.7 | 808000 | 1.9455 |
|
150 |
+
| 2.0763 | 1.72 | 816000 | 1.9421 |
|
151 |
+
| 2.0763 | 1.73 | 824000 | 1.9438 |
|
152 |
+
| 2.0758 | 1.75 | 832000 | 1.9371 |
|
153 |
+
| 2.0758 | 1.77 | 840000 | 1.9432 |
|
154 |
+
| 2.0888 | 1.79 | 848000 | 1.9414 |
|
155 |
+
| 2.0888 | 1.8 | 856000 | 1.9444 |
|
156 |
+
| 2.0786 | 1.82 | 864000 | 1.9408 |
|
157 |
+
| 2.0786 | 1.84 | 872000 | 1.9397 |
|
158 |
+
| 2.079 | 1.85 | 880000 | 1.9406 |
|
159 |
+
| 2.079 | 1.87 | 888000 | 1.9442 |
|
160 |
+
| 2.0817 | 1.89 | 896000 | 1.9404 |
|
161 |
+
| 2.0817 | 1.9 | 904000 | 1.9450 |
|
162 |
+
| 2.0792 | 1.92 | 912000 | 1.9380 |
|
163 |
+
| 2.0792 | 1.94 | 920000 | 1.9385 |
|
164 |
+
| 2.0741 | 1.95 | 928000 | 1.9449 |
|
165 |
+
| 2.0741 | 1.97 | 936000 | 1.9414 |
|
166 |
+
| 2.0832 | 1.99 | 944000 | 1.9402 |
|
167 |
+
| 2.0832 | 2.0 | 952000 | 1.9410 |
|
168 |
+
| 2.0695 | 2.02 | 960000 | 1.9371 |
|
169 |
+
| 2.0695 | 2.04 | 968000 | 1.9342 |
|
170 |
+
| 2.0813 | 2.05 | 976000 | 1.9376 |
|
171 |
+
| 2.0813 | 2.07 | 984000 | 1.9397 |
|
172 |
+
| 2.0804 | 2.09 | 992000 | 1.9394 |
|
173 |
+
| 2.0804 | 2.11 | 1000000 | 1.9370 |
|
174 |
+
| 2.0789 | 2.12 | 1008000 | 1.9350 |
|
175 |
+
| 2.0789 | 2.14 | 1016000 | 1.9327 |
|
176 |
+
| 2.0754 | 2.16 | 1024000 | 1.9421 |
|
177 |
+
| 2.0754 | 2.17 | 1032000 | 1.9371 |
|
178 |
+
| 2.0774 | 2.19 | 1040000 | 1.9411 |
|
179 |
+
| 2.0774 | 2.21 | 1048000 | 1.9337 |
|
180 |
+
| 2.0766 | 2.22 | 1056000 | 1.9387 |
|
181 |
+
| 2.0766 | 2.24 | 1064000 | 1.9334 |
|
182 |
+
| 2.079 | 2.26 | 1072000 | 1.9386 |
|
183 |
+
| 2.079 | 2.27 | 1080000 | 1.9335 |
|
184 |
+
| 2.068 | 2.29 | 1088000 | 1.9363 |
|
185 |
+
| 2.068 | 2.31 | 1096000 | 1.9420 |
|
186 |
+
| 2.0786 | 2.32 | 1104000 | 1.9331 |
|
187 |
+
| 2.0786 | 2.34 | 1112000 | 1.9327 |
|
188 |
+
| 2.0734 | 2.36 | 1120000 | 1.9391 |
|
189 |
+
| 2.0734 | 2.37 | 1128000 | 1.9363 |
|
190 |
+
| 2.0787 | 2.39 | 1136000 | 1.9321 |
|
191 |
+
| 2.0787 | 2.41 | 1144000 | 1.9333 |
|
192 |
+
| 2.0731 | 2.43 | 1152000 | 1.9369 |
|
193 |
+
| 2.0731 | 2.44 | 1160000 | 1.9357 |
|
194 |
+
| 2.0816 | 2.46 | 1168000 | 1.9353 |
|
195 |
+
| 2.0816 | 2.48 | 1176000 | 1.9319 |
|
196 |
+
| 2.0758 | 2.49 | 1184000 | 1.9366 |
|
197 |
+
| 2.0758 | 2.51 | 1192000 | 1.9301 |
|
198 |
+
| 2.0725 | 2.53 | 1200000 | 1.9329 |
|
199 |
+
| 2.0725 | 2.54 | 1208000 | 1.9370 |
|
200 |
+
| 2.085 | 2.56 | 1216000 | 1.9251 |
|
201 |
+
| 2.085 | 2.58 | 1224000 | 1.9369 |
|
202 |
+
| 2.0809 | 2.59 | 1232000 | 1.9377 |
|
203 |
+
| 2.0809 | 2.61 | 1240000 | 1.9398 |
|
204 |
+
| 2.0742 | 2.63 | 1248000 | 1.9368 |
|
205 |
+
| 2.0742 | 2.64 | 1256000 | 1.9389 |
|
206 |
+
| 2.0743 | 2.66 | 1264000 | 1.9287 |
|
207 |
+
| 2.0743 | 2.68 | 1272000 | 1.9337 |
|
208 |
+
| 2.0822 | 2.69 | 1280000 | 1.9323 |
|
209 |
+
| 2.0822 | 2.71 | 1288000 | 1.9348 |
|
210 |
+
| 2.0845 | 2.73 | 1296000 | 1.9328 |
|
211 |
+
| 2.0845 | 2.75 | 1304000 | 1.9324 |
|
212 |
+
| 2.0706 | 2.76 | 1312000 | 1.9304 |
|
213 |
+
| 2.0706 | 2.78 | 1320000 | 1.9322 |
|
214 |
+
| 2.0813 | 2.8 | 1328000 | 1.9320 |
|
215 |
+
| 2.0813 | 2.81 | 1336000 | 1.9379 |
|
216 |
+
| 2.0768 | 2.83 | 1344000 | 1.9283 |
|
217 |
+
| 2.0768 | 2.85 | 1352000 | 1.9352 |
|
218 |
+
| 2.0776 | 2.86 | 1360000 | 1.9266 |
|
219 |
+
| 2.0776 | 2.88 | 1368000 | 1.9339 |
|
220 |
+
| 2.0776 | 2.9 | 1376000 | 1.9371 |
|
221 |
+
| 2.0776 | 2.91 | 1384000 | 1.9353 |
|
222 |
+
| 2.072 | 2.93 | 1392000 | 1.9290 |
|
223 |
+
| 2.072 | 2.95 | 1400000 | 1.9337 |
|
224 |
+
| 2.077 | 2.96 | 1408000 | 1.9318 |
|
225 |
+
| 2.077 | 2.98 | 1416000 | 1.9326 |
|
226 |
+
| 2.0777 | 3.0 | 1424000 | 1.9338 |
|
227 |
+
| 2.0777 | 3.01 | 1432000 | 1.9307 |
|
228 |
+
| 2.0846 | 3.03 | 1440000 | 1.9305 |
|
229 |
+
| 2.0846 | 3.05 | 1448000 | 1.9312 |
|
230 |
+
| 2.0744 | 3.07 | 1456000 | 1.9332 |
|
231 |
+
| 2.0744 | 3.08 | 1464000 | 1.9313 |
|
232 |
+
| 2.0767 | 3.1 | 1472000 | 1.9311 |
|
233 |
+
| 2.0767 | 3.12 | 1480000 | 1.9322 |
|
234 |
+
| 2.082 | 3.13 | 1488000 | 1.9362 |
|
235 |
+
| 2.082 | 3.15 | 1496000 | 1.9329 |
|
236 |
+
| 2.0774 | 3.17 | 1504000 | 1.9335 |
|
237 |
+
| 2.0774 | 3.18 | 1512000 | 1.9342 |
|
238 |
+
| 2.0793 | 3.2 | 1520000 | 1.9326 |
|
239 |
+
| 2.0793 | 3.22 | 1528000 | 1.9313 |
|
240 |
+
| 2.0834 | 3.23 | 1536000 | 1.9302 |
|
241 |
+
| 2.0834 | 3.25 | 1544000 | 1.9299 |
|
242 |
+
| 2.0698 | 3.27 | 1552000 | 1.9288 |
|
243 |
+
| 2.0698 | 3.28 | 1560000 | 1.9311 |
|
244 |
+
| 2.0721 | 3.3 | 1568000 | 1.9262 |
|
245 |
+
| 2.0721 | 3.32 | 1576000 | 1.9320 |
|
246 |
+
| 2.0742 | 3.33 | 1584000 | 1.9278 |
|
247 |
+
| 2.0742 | 3.35 | 1592000 | 1.9333 |
|
248 |
+
| 2.0774 | 3.37 | 1600000 | 1.9252 |
|
249 |
+
| 2.0774 | 3.39 | 1608000 | 1.9301 |
|
250 |
+
| 2.0766 | 3.4 | 1616000 | 1.9344 |
|
251 |
+
| 2.0766 | 3.42 | 1624000 | 1.9320 |
|
252 |
+
| 2.0702 | 3.44 | 1632000 | 1.9307 |
|
253 |
+
| 2.0702 | 3.45 | 1640000 | 1.9304 |
|
254 |
+
| 2.0772 | 3.47 | 1648000 | 1.9280 |
|
255 |
+
| 2.0772 | 3.49 | 1656000 | 1.9324 |
|
256 |
+
| 2.0757 | 3.5 | 1664000 | 1.9343 |
|
257 |
+
| 2.0757 | 3.52 | 1672000 | 1.9312 |
|
258 |
+
| 2.0747 | 3.54 | 1680000 | 1.9304 |
|
259 |
+
| 2.0747 | 3.55 | 1688000 | 1.9360 |
|
260 |
+
| 2.068 | 3.57 | 1696000 | 1.9297 |
|
261 |
+
| 2.068 | 3.59 | 1704000 | 1.9337 |
|
262 |
+
| 2.0825 | 3.6 | 1712000 | 1.9293 |
|
263 |
+
| 2.0825 | 3.62 | 1720000 | 1.9295 |
|
264 |
+
| 2.0811 | 3.64 | 1728000 | 1.9315 |
|
265 |
+
| 2.0811 | 3.65 | 1736000 | 1.9279 |
|
266 |
+
| 2.0844 | 3.67 | 1744000 | 1.9289 |
|
267 |
+
| 2.0844 | 3.69 | 1752000 | 1.9279 |
|
268 |
+
| 2.0827 | 3.71 | 1760000 | 1.9283 |
|
269 |
+
| 2.0827 | 3.72 | 1768000 | 1.9295 |
|
270 |
+
| 2.0684 | 3.74 | 1776000 | 1.9281 |
|
271 |
+
| 2.0684 | 3.76 | 1784000 | 1.9330 |
|
272 |
+
| 2.0724 | 3.77 | 1792000 | 1.9294 |
|
273 |
+
| 2.0724 | 3.79 | 1800000 | 1.9276 |
|
274 |
+
| 2.074 | 3.81 | 1808000 | 1.9227 |
|
275 |
+
| 2.074 | 3.82 | 1816000 | 1.9320 |
|
276 |
+
| 2.0801 | 3.84 | 1824000 | 1.9275 |
|
277 |
+
| 2.0801 | 3.86 | 1832000 | 1.9302 |
|
278 |
+
| 2.0783 | 3.87 | 1840000 | 1.9333 |
|
279 |
+
| 2.0783 | 3.89 | 1848000 | 1.9296 |
|
280 |
+
| 2.0787 | 3.91 | 1856000 | 1.9302 |
|
281 |
+
| 2.0787 | 3.92 | 1864000 | 1.9347 |
|
282 |
+
| 2.0733 | 3.94 | 1872000 | 1.9298 |
|
283 |
+
| 2.0733 | 3.96 | 1880000 | 1.9302 |
|
284 |
+
| 2.0742 | 3.97 | 1888000 | 1.9279 |
|
285 |
+
| 2.0742 | 3.99 | 1896000 | 1.9258 |
|
286 |
+
| 2.0769 | 4.01 | 1904000 | 1.9255 |
|
287 |
+
| 2.0769 | 4.03 | 1912000 | 1.9282 |
|
288 |
+
| 2.0736 | 4.04 | 1920000 | 1.9298 |
|
289 |
+
| 2.0736 | 4.06 | 1928000 | 1.9325 |
|
290 |
+
| 2.0713 | 4.08 | 1936000 | 1.9296 |
|
291 |
+
| 2.0713 | 4.09 | 1944000 | 1.9293 |
|
292 |
+
| 2.0825 | 4.11 | 1952000 | 1.9345 |
|
293 |
+
| 2.0825 | 4.13 | 1960000 | 1.9346 |
|
294 |
+
| 2.0828 | 4.14 | 1968000 | 1.9311 |
|
295 |
+
| 2.0828 | 4.16 | 1976000 | 1.9307 |
|
296 |
+
| 2.0821 | 4.18 | 1984000 | 1.9336 |
|
297 |
+
| 2.0821 | 4.19 | 1992000 | 1.9265 |
|
298 |
+
| 2.0768 | 4.21 | 2000000 | 1.9284 |
|
299 |
+
| 2.0768 | 4.23 | 2008000 | 1.9290 |
|
300 |
+
| 2.0695 | 4.24 | 2016000 | 1.9306 |
|
301 |
+
| 2.0695 | 4.26 | 2024000 | 1.9299 |
|
302 |
+
| 2.0698 | 4.28 | 2032000 | 1.9230 |
|
303 |
+
| 2.0698 | 4.29 | 2040000 | 1.9272 |
|
304 |
+
| 2.0776 | 4.31 | 2048000 | 1.9306 |
|
305 |
+
| 2.0776 | 4.33 | 2056000 | 1.9243 |
|
306 |
+
| 2.0797 | 4.35 | 2064000 | 1.9266 |
|
307 |
+
| 2.0797 | 4.36 | 2072000 | 1.9249 |
|
308 |
+
| 2.0808 | 4.38 | 2080000 | 1.9279 |
|
309 |
+
| 2.0808 | 4.4 | 2088000 | 1.9262 |
|
310 |
+
| 2.0776 | 4.41 | 2096000 | 1.9350 |
|
311 |
+
| 2.0776 | 4.43 | 2104000 | 1.9297 |
|
312 |
+
| 2.0805 | 4.45 | 2112000 | 1.9337 |
|
313 |
+
| 2.0805 | 4.46 | 2120000 | 1.9302 |
|
314 |
+
| 2.0791 | 4.48 | 2128000 | 1.9337 |
|
315 |
+
| 2.0791 | 4.5 | 2136000 | 1.9298 |
|
316 |
+
| 2.0771 | 4.51 | 2144000 | 1.9268 |
|
317 |
+
| 2.0771 | 4.53 | 2152000 | 1.9370 |
|
318 |
+
| 2.0807 | 4.55 | 2160000 | 1.9307 |
|
319 |
+
| 2.0807 | 4.56 | 2168000 | 1.9292 |
|
320 |
+
| 2.0856 | 4.58 | 2176000 | 1.9300 |
|
321 |
+
| 2.0856 | 4.6 | 2184000 | 1.9329 |
|
322 |
+
| 2.0744 | 4.61 | 2192000 | 1.9319 |
|
323 |
+
| 2.0744 | 4.63 | 2200000 | 1.9352 |
|
324 |
+
| 2.0839 | 4.65 | 2208000 | 1.9368 |
|
325 |
+
| 2.0839 | 4.67 | 2216000 | 1.9343 |
|
326 |
+
| 2.0706 | 4.68 | 2224000 | 1.9290 |
|
327 |
+
| 2.0706 | 4.7 | 2232000 | 1.9347 |
|
328 |
+
| 2.0745 | 4.72 | 2240000 | 1.9294 |
|
329 |
+
| 2.0745 | 4.73 | 2248000 | 1.9255 |
|
330 |
+
| 2.0767 | 4.75 | 2256000 | 1.9271 |
|
331 |
+
| 2.0767 | 4.77 | 2264000 | 1.9296 |
|
332 |
+
| 2.0753 | 4.78 | 2272000 | 1.9268 |
|
333 |
+
| 2.0753 | 4.8 | 2280000 | 1.9292 |
|
334 |
+
| 2.0716 | 4.82 | 2288000 | 1.9310 |
|
335 |
+
| 2.0716 | 4.83 | 2296000 | 1.9267 |
|
336 |
+
| 2.0778 | 4.85 | 2304000 | 1.9301 |
|
337 |
+
| 2.0778 | 4.87 | 2312000 | 1.9280 |
|
338 |
+
| 2.0724 | 4.88 | 2320000 | 1.9283 |
|
339 |
+
| 2.0724 | 4.9 | 2328000 | 1.9289 |
|
340 |
+
| 2.0811 | 4.92 | 2336000 | 1.9315 |
|
341 |
+
| 2.0811 | 4.93 | 2344000 | 1.9268 |
|
342 |
+
| 2.0816 | 4.95 | 2352000 | 1.9304 |
|
343 |
+
| 2.0816 | 4.97 | 2360000 | 1.9302 |
|
344 |
+
| 2.0775 | 4.99 | 2368000 | 1.9292 |
|
345 |
+
| 2.0775 | 5.0 | 2376000 | 1.9274 |
|
346 |
+
| 2.0807 | 5.02 | 2384000 | 1.9317 |
|
347 |
+
| 2.0807 | 5.04 | 2392000 | 1.9298 |
|
348 |
+
| 2.0668 | 5.05 | 2400000 | 1.9349 |
|
349 |
|
350 |
|
351 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498859189
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f0b4a0aab2afc208a6ea416ff5f9eea1a3ed5c1e3e33bd3bfbb373bdffc61a4
|
3 |
size 498859189
|