File size: 15,725 Bytes
4e4338b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import en_core_web_sm
import json
import numpy as np
import random
import re
import torch
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    AutoModelForSequenceClassification,
)
from typing import Any, List, Mapping, Tuple


class QuestionGenerator:
    """A transformer-based NLP system for generating reading comprehension-style questions from
    texts. It can generate full sentence questions, multiple choice questions, or a mix of the
    two styles.

    To filter out low quality questions, questions are assigned a score and ranked once they have
    been generated. Only the top k questions will be returned. This behaviour can be turned off
    by setting use_evaluator=False.
    """

    def __init__(self) -> None:

        QG_PRETRAINED = "iarfmoose/t5-base-question-generator"
        self.ANSWER_TOKEN = "<answer>"
        self.CONTEXT_TOKEN = "<context>"
        self.SEQ_LENGTH = 512

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")

        self.qg_tokenizer = AutoTokenizer.from_pretrained(
            QG_PRETRAINED, use_fast=False)
        self.qg_model = AutoModelForSeq2SeqLM.from_pretrained(QG_PRETRAINED)
        self.qg_model.to(self.device)
        self.qg_model.eval()

        self.qa_evaluator = QAEvaluator()

    def generate(
        self,
        article: str,
        use_evaluator: bool = True,
        num_questions: bool = None,
        answer_style: str = "all"
    ) -> List:
        """Takes an article and generates a set of question and answer pairs. If use_evaluator
        is True then QA pairs will be ranked and filtered based on their quality. answer_style
        should selected from ["all", "sentences", "multiple_choice"].
        """

        print("Generating questions...\n")

        qg_inputs, qg_answers = self.generate_qg_inputs(article, answer_style)
        generated_questions = self.generate_questions_from_inputs(qg_inputs)

        message = "{} questions doesn't match {} answers".format(
            len(generated_questions), len(qg_answers)
        )
        assert len(generated_questions) == len(qg_answers), message

        if use_evaluator:
            print("Evaluating QA pairs...\n")
            encoded_qa_pairs = self.qa_evaluator.encode_qa_pairs(
                generated_questions, qg_answers
            )
            scores = self.qa_evaluator.get_scores(encoded_qa_pairs)

            if num_questions:
                qa_list = self._get_ranked_qa_pairs(
                    generated_questions, qg_answers, scores, num_questions
                )
            else:
                qa_list = self._get_ranked_qa_pairs(
                    generated_questions, qg_answers, scores
                )

        else:
            print("Skipping evaluation step.\n")
            qa_list = self._get_all_qa_pairs(generated_questions, qg_answers)

        return qa_list

    def generate_qg_inputs(self, text: str, answer_style: str) -> Tuple[List[str], List[str]]:
        """Given a text, returns a list of model inputs and a list of corresponding answers.
        Model inputs take the form "answer_token <answer text> context_token <context text>" where
        the answer is a string extracted from the text, and the context is the wider text surrounding
        the context.
        """

        VALID_ANSWER_STYLES = ["all", "sentences", "multiple_choice"]

        if answer_style not in VALID_ANSWER_STYLES:
            raise ValueError(
                "Invalid answer style {}. Please choose from {}".format(
                    answer_style, VALID_ANSWER_STYLES
                )
            )

        inputs = []
        answers = []

        if answer_style == "sentences" or answer_style == "all":
            segments = self._split_into_segments(text)

            for segment in segments:
                sentences = self._split_text(segment)
                prepped_inputs, prepped_answers = self._prepare_qg_inputs(
                    sentences, segment
                )
                inputs.extend(prepped_inputs)
                answers.extend(prepped_answers)

        if answer_style == "multiple_choice" or answer_style == "all":
            sentences = self._split_text(text)
            prepped_inputs, prepped_answers = self._prepare_qg_inputs_MC(
                sentences
            )
            inputs.extend(prepped_inputs)
            answers.extend(prepped_answers)

        return inputs, answers

    def generate_questions_from_inputs(self, qg_inputs: List) -> List[str]:
        """Given a list of concatenated answers and contexts, with the form:
        "answer_token <answer text> context_token <context text>", generates a list of 
        questions.
        """
        generated_questions = []

        for qg_input in qg_inputs:
            question = self._generate_question(qg_input)
            generated_questions.append(question)

        return generated_questions

    def _split_text(self, text: str) -> List[str]:
        """Splits the text into sentences, and attempts to split or truncate long sentences."""
        MAX_SENTENCE_LEN = 128
        sentences = re.findall(".*?[.!\?]", text)
        cut_sentences = []

        for sentence in sentences:
            if len(sentence) > MAX_SENTENCE_LEN:
                cut_sentences.extend(re.split("[,;:)]", sentence))

        # remove useless post-quote sentence fragments
        cut_sentences = [s for s in sentences if len(s.split(" ")) > 5]
        sentences = sentences + cut_sentences

        return list(set([s.strip(" ") for s in sentences]))

    def _split_into_segments(self, text: str) -> List[str]:
        """Splits a long text into segments short enough to be input into the transformer network.
        Segments are used as context for question generation.
        """
        MAX_TOKENS = 490
        paragraphs = text.split("\n")
        tokenized_paragraphs = [
            self.qg_tokenizer(p)["input_ids"] for p in paragraphs if len(p) > 0
        ]
        segments = []

        while len(tokenized_paragraphs) > 0:
            segment = []

            while len(segment) < MAX_TOKENS and len(tokenized_paragraphs) > 0:
                paragraph = tokenized_paragraphs.pop(0)
                segment.extend(paragraph)
            segments.append(segment)

        return [self.qg_tokenizer.decode(s, skip_special_tokens=True) for s in segments]

    def _prepare_qg_inputs(
        self,
        sentences: List[str],
        text: str
    ) -> Tuple[List[str], List[str]]:
        """Uses sentences as answers and the text as context. Returns a tuple of (model inputs, answers).
        Model inputs are "answer_token <answer text> context_token <context text>" 
        """
        inputs = []
        answers = []

        for sentence in sentences:
            qg_input = f"{self.ANSWER_TOKEN} {sentence} {self.CONTEXT_TOKEN} {text}"
            inputs.append(qg_input)
            answers.append(sentence)

        return inputs, answers

    def _prepare_qg_inputs_MC(self, sentences: List[str]) -> Tuple[List[str], List[str]]:
        """Performs NER on the text, and uses extracted entities are candidate answers for multiple-choice
        questions. Sentences are used as context, and entities as answers. Returns a tuple of (model inputs, answers). 
        Model inputs are "answer_token <answer text> context_token <context text>"
        """
        spacy_nlp = en_core_web_sm.load()
        docs = list(spacy_nlp.pipe(sentences, disable=["parser"]))
        inputs_from_text = []
        answers_from_text = []

        for doc, sentence in zip(docs, sentences):
            entities = doc.ents
            if entities:

                for entity in entities:
                    qg_input = f"{self.ANSWER_TOKEN} {entity} {self.CONTEXT_TOKEN} {sentence}"
                    answers = self._get_MC_answers(entity, docs)
                    inputs_from_text.append(qg_input)
                    answers_from_text.append(answers)

        return inputs_from_text, answers_from_text

    def _get_MC_answers(self, correct_answer: Any, docs: Any) -> List[Mapping[str, Any]]:
        """Finds a set of alternative answers for a multiple-choice question. Will attempt to find
        alternatives of the same entity type as correct_answer if possible.
        """
        entities = []

        for doc in docs:
            entities.extend([{"text": e.text, "label_": e.label_}
                            for e in doc.ents])

        # remove duplicate elements
        entities_json = [json.dumps(kv) for kv in entities]
        pool = set(entities_json)
        num_choices = (
            min(4, len(pool)) - 1
        )  # -1 because we already have the correct answer

        # add the correct answer
        final_choices = []
        correct_label = correct_answer.label_
        final_choices.append({"answer": correct_answer.text, "correct": True})
        pool.remove(
            json.dumps({"text": correct_answer.text,
                       "label_": correct_answer.label_})
        )

        # find answers with the same NER label
        matches = [e for e in pool if correct_label in e]

        # if we don't have enough then add some other random answers
        if len(matches) < num_choices:
            choices = matches
            pool = pool.difference(set(choices))
            choices.extend(random.sample(pool, num_choices - len(choices)))
        else:
            choices = random.sample(matches, num_choices)

        choices = [json.loads(s) for s in choices]

        for choice in choices:
            final_choices.append({"answer": choice["text"], "correct": False})

        random.shuffle(final_choices)
        return final_choices

    @torch.no_grad()
    def _generate_question(self, qg_input: str) -> str:
        """Takes qg_input which is the concatenated answer and context, and uses it to generate
        a question sentence. The generated question is decoded and then returned.
        """
        encoded_input = self._encode_qg_input(qg_input)
        output = self.qg_model.generate(input_ids=encoded_input["input_ids"])
        question = self.qg_tokenizer.decode(
            output[0],
            skip_special_tokens=True
        )
        return question

    def _encode_qg_input(self, qg_input: str) -> torch.tensor:
        """Tokenizes a string and returns a tensor of input ids corresponding to indices of tokens in 
        the vocab.
        """
        return self.qg_tokenizer(
            qg_input,
            padding='max_length',
            max_length=self.SEQ_LENGTH,
            truncation=True,
            return_tensors="pt",
        ).to(self.device)

    def _get_ranked_qa_pairs(
        self, generated_questions: List[str], qg_answers: List[str], scores, num_questions: int = 10
    ) -> List[Mapping[str, str]]:
        """Ranks generated questions according to scores, and returns the top num_questions examples.
        """
        if num_questions > len(scores):
            num_questions = len(scores)
            print((
                f"\nWas only able to generate {num_questions} questions.",
                "For more questions, please input a longer text.")
            )

        qa_list = []

        for i in range(num_questions):
            index = scores[i]
            qa = {
                "question": generated_questions[index].split("?")[0] + "?",
                "answer": qg_answers[index]
            }
            qa_list.append(qa)

        return qa_list

    def _get_all_qa_pairs(self, generated_questions: List[str], qg_answers: List[str]):
        """Formats question and answer pairs without ranking or filtering."""
        qa_list = []

        for question, answer in zip(generated_questions, qg_answers):
            qa = {
                "question": question.split("?")[0] + "?",
                "answer": answer
            }
            qa_list.append(qa)

        return qa_list


class QAEvaluator:
    """Wrapper for a transformer model which evaluates the quality of question-answer pairs.
    Given a QA pair, the model will generate a score. Scores can be used to rank and filter
    QA pairs.
    """

    def __init__(self) -> None:

        QAE_PRETRAINED = "iarfmoose/bert-base-cased-qa-evaluator"
        self.SEQ_LENGTH = 512

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")

        self.qae_tokenizer = AutoTokenizer.from_pretrained(QAE_PRETRAINED)
        self.qae_model = AutoModelForSequenceClassification.from_pretrained(
            QAE_PRETRAINED
        )
        self.qae_model.to(self.device)
        self.qae_model.eval()

    def encode_qa_pairs(self, questions: List[str], answers: List[str]) -> List[torch.tensor]:
        """Takes a list of questions and a list of answers and encodes them as a list of tensors."""
        encoded_pairs = []

        for question, answer in zip(questions, answers):
            encoded_qa = self._encode_qa(question, answer)
            encoded_pairs.append(encoded_qa.to(self.device))

        return encoded_pairs

    def get_scores(self, encoded_qa_pairs: List[torch.tensor]) -> List[float]:
        """Generates scores for a list of encoded QA pairs."""
        scores = {}

        for i in range(len(encoded_qa_pairs)):
            scores[i] = self._evaluate_qa(encoded_qa_pairs[i])

        return [
            k for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True)
        ]

    def _encode_qa(self, question: str, answer: str) -> torch.tensor:
        """Concatenates a question and answer, and then tokenizes them. Returns a tensor of 
        input ids corresponding to indices in the vocab.
        """
        if type(answer) is list:
            for a in answer:
                if a["correct"]:
                    correct_answer = a["answer"]
        else:
            correct_answer = answer

        return self.qae_tokenizer(
            text=question,
            text_pair=correct_answer,
            padding="max_length",
            max_length=self.SEQ_LENGTH,
            truncation=True,
            return_tensors="pt",
        )

    @torch.no_grad()
    def _evaluate_qa(self, encoded_qa_pair: torch.tensor) -> float:
        """Takes an encoded QA pair and returns a score."""
        output = self.qae_model(**encoded_qa_pair)
        return output[0][0][1]


def print_qa(qa_list: List[Mapping[str, str]], show_answers: bool = True) -> None:
    """Formats and prints a list of generated questions and answers."""

    for i in range(len(qa_list)):
        # wider space for 2 digit q nums
        space = " " * int(np.where(i < 9, 3, 4))

        print(f"{i + 1}) Q: {qa_list[i]['question']}")

        answer = qa_list[i]["answer"]

        # print a list of multiple choice answers
        if type(answer) is list:

            if show_answers:
                print(
                    f"{space}A: 1. {answer[0]['answer']} "
                    f"{np.where(answer[0]['correct'], '(correct)', '')}"
                )
                for j in range(1, len(answer)):
                    print(
                        f"{space + '   '}{j + 1}. {answer[j]['answer']} "
                        f"{np.where(answer[j]['correct']==True,'(correct)', '')}"
                    )

            else:
                print(f"{space}A: 1. {answer[0]['answer']}")
                for j in range(1, len(answer)):
                    print(f"{space + '   '}{j + 1}. {answer[j]['answer']}")

            print("")

        # print full sentence answers
        else:
            if show_answers:
                print(f"{space}A: {answer}\n")