--- license: llama2 library_name: peft tags: - trl - sft - generated_from_trainer datasets: - dialogstudio base_model: TencentARC/LLaMA-Pro-8B model-index: - name: llama-pro-8b-tweet-summarization-gradnorm-0.3 results: [] --- # llama-pro-8b-tweet-summarization-gradnorm-0.3 This model is a fine-tuned version of [TencentARC/LLaMA-Pro-8B](https://huggingface.co/TencentARC/LLaMA-Pro-8B) on the dialogstudio dataset. It achieves the following results on the evaluation set: - Loss: 2.9796 - Rouge Scores: {'rouge1': 93.71888929189157, 'rouge2': 77.8377567936117, 'rougeL': 64.47906852741538, 'rougeLsum': 93.71298018429633} - Bleu Scores: [0.9470990193868204, 0.9341779145832757, 0.9064440397746264, 0.8744914403659334] - Gen Len: 463.0182 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge Scores | Bleu Scores | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------:|:--------:| | 1.9065 | 1.0 | 220 | 1.8530 | {'rouge1': 92.83694737064799, 'rouge2': 78.72458121869542, 'rougeL': 67.88788283384865, 'rougeLsum': 92.83768512059282} | [0.8739198483584956, 0.8530170264142946, 0.8271978418182495, 0.7998377773703629] | 463.0182 | | 1.6363 | 2.0 | 440 | 1.8633 | {'rouge1': 93.54135671371444, 'rouge2': 78.96116387599493, 'rougeL': 67.77857901494997, 'rougeLsum': 93.54432289584433} | [0.8758125801988195, 0.8577741180618648, 0.8322886881519586, 0.80457236049974] | 463.0182 | | 1.2817 | 3.0 | 660 | 2.0098 | {'rouge1': 87.30764070509844, 'rouge2': 73.12328274037898, 'rougeL': 62.00625532521349, 'rougeLsum': 87.29149649901954} | [0.8757949025917542, 0.8593181834244542, 0.8334473061685955, 0.8048319452251607] | 463.0182 | | 0.9049 | 4.0 | 880 | 2.2481 | {'rouge1': 87.35996946418575, 'rouge2': 72.87802745947901, 'rougeL': 61.35206821444361, 'rougeLsum': 87.32662841081371} | [0.8755472589597261, 0.859572654041077, 0.8333237300074641, 0.804082483213136] | 463.0182 | | 0.5916 | 5.0 | 1100 | 2.5061 | {'rouge1': 78.38431994557745, 'rouge2': 64.89809559762811, 'rougeL': 53.805209482421525, 'rougeLsum': 78.30608179426231} | [0.747179346815877, 0.7352208249958618, 0.7126103103040894, 0.6869428956670465] | 463.0182 | | 0.3898 | 6.0 | 1320 | 2.8150 | {'rouge1': 93.77539618029996, 'rouge2': 78.03050568501187, 'rougeL': 64.82344374456906, 'rougeLsum': 93.76894400818286} | [0.9469183628254614, 0.9342162110956728, 0.9067374010427977, 0.8750430150656403] | 463.0182 | | 0.2961 | 7.0 | 1540 | 2.9796 | {'rouge1': 93.71888929189157, 'rouge2': 77.8377567936117, 'rougeL': 64.47906852741538, 'rougeLsum': 93.71298018429633} | [0.9470990193868204, 0.9341779145832757, 0.9064440397746264, 0.8744914403659334] | 463.0182 | ### Framework versions - PEFT 0.8.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.1