File size: 3,685 Bytes
5d6100f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: poem-gen-t5-small_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# poem-gen-t5-small_v1
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7290
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 3.5397 | 0.32 | 5000 | 3.3474 |
| 3.4107 | 0.63 | 10000 | 3.2260 |
| 3.3236 | 0.95 | 15000 | 3.1414 |
| 3.25 | 1.26 | 20000 | 3.0884 |
| 3.2055 | 1.58 | 25000 | 3.0461 |
| 3.1677 | 1.89 | 30000 | 3.0057 |
| 3.1189 | 2.21 | 35000 | 2.9786 |
| 3.0972 | 2.53 | 40000 | 2.9533 |
| 3.0855 | 2.84 | 45000 | 2.9318 |
| 3.0364 | 3.16 | 50000 | 2.9124 |
| 3.0125 | 3.47 | 55000 | 2.8962 |
| 2.9987 | 3.79 | 60000 | 2.8812 |
| 2.9734 | 4.1 | 65000 | 2.8675 |
| 2.9782 | 4.42 | 70000 | 2.8563 |
| 2.9492 | 4.74 | 75000 | 2.8446 |
| 2.9383 | 5.05 | 80000 | 2.8360 |
| 2.9322 | 5.37 | 85000 | 2.8250 |
| 2.9193 | 5.68 | 90000 | 2.8159 |
| 2.9119 | 6.0 | 95000 | 2.8095 |
| 2.8893 | 6.31 | 100000 | 2.8046 |
| 2.8927 | 6.63 | 105000 | 2.7975 |
| 2.8944 | 6.95 | 110000 | 2.7879 |
| 2.8568 | 7.26 | 115000 | 2.7856 |
| 2.8648 | 7.58 | 120000 | 2.7808 |
| 2.8534 | 7.89 | 125000 | 2.7737 |
| 2.8563 | 8.21 | 130000 | 2.7696 |
| 2.8387 | 8.52 | 135000 | 2.7664 |
| 2.8328 | 8.84 | 140000 | 2.7643 |
| 2.8137 | 9.16 | 145000 | 2.7615 |
| 2.8058 | 9.47 | 150000 | 2.7548 |
| 2.8138 | 9.79 | 155000 | 2.7547 |
| 2.8098 | 10.1 | 160000 | 2.7506 |
| 2.7944 | 10.42 | 165000 | 2.7479 |
| 2.809 | 10.73 | 170000 | 2.7443 |
| 2.7897 | 11.05 | 175000 | 2.7431 |
| 2.7955 | 11.37 | 180000 | 2.7403 |
| 2.793 | 11.68 | 185000 | 2.7403 |
| 2.798 | 12.0 | 190000 | 2.7351 |
| 2.7955 | 12.31 | 195000 | 2.7351 |
| 2.785 | 12.63 | 200000 | 2.7329 |
| 2.7701 | 12.94 | 205000 | 2.7329 |
| 2.7744 | 13.26 | 210000 | 2.7317 |
| 2.7827 | 13.58 | 215000 | 2.7295 |
| 2.7793 | 13.89 | 220000 | 2.7303 |
| 2.7782 | 14.21 | 225000 | 2.7298 |
| 2.7762 | 14.52 | 230000 | 2.7289 |
| 2.7719 | 14.84 | 235000 | 2.7292 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|