File size: 2,863 Bytes
1dadbca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large-hate-offensive-normal-speech-lr-2e-05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-hate-offensive-normal-speech-lr-2e-05
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0293
- Accuracy: 0.9837
- Weighted f1: 0.9837
- Weighted recall: 0.9837
- Weighted precision: 0.9839
- Micro f1: 0.9837
- Micro recall: 0.9837
- Micro precision: 0.9837
- Macro f1: 0.9832
- Macro recall: 0.9821
- Macro precision: 0.9845
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Weighted recall | Weighted precision | Micro f1 | Micro recall | Micro precision | Macro f1 | Macro recall | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------------:|:--------:|:------------:|:---------------:|:--------:|:------------:|:---------------:|
| 0.5253 | 1.0 | 153 | 0.1270 | 0.9642 | 0.9647 | 0.9642 | 0.9681 | 0.9642 | 0.9642 | 0.9642 | 0.9633 | 0.9662 | 0.9633 |
| 0.0921 | 2.0 | 306 | 0.0878 | 0.9805 | 0.9805 | 0.9805 | 0.9807 | 0.9805 | 0.9805 | 0.9805 | 0.9803 | 0.9791 | 0.9818 |
| 0.0413 | 3.0 | 459 | 0.0590 | 0.9870 | 0.9870 | 0.9870 | 0.9875 | 0.9870 | 0.9870 | 0.9870 | 0.9860 | 0.9869 | 0.9857 |
| 0.0261 | 4.0 | 612 | 0.0523 | 0.9902 | 0.9902 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | 0.9902 | 0.9896 | 0.9896 | 0.9900 |
| 0.012 | 5.0 | 765 | 0.0293 | 0.9837 | 0.9837 | 0.9837 | 0.9839 | 0.9837 | 0.9837 | 0.9837 | 0.9832 | 0.9821 | 0.9845 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.6.dev0
- Tokenizers 0.13.3
|