--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-hate-offensive-normal-speech-lr-2e-05 results: [] --- # roberta-large-hate-offensive-normal-speech-lr-2e-05 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0293 - Accuracy: 0.9837 - Weighted f1: 0.9837 - Weighted recall: 0.9837 - Weighted precision: 0.9839 - Micro f1: 0.9837 - Micro recall: 0.9837 - Micro precision: 0.9837 - Macro f1: 0.9832 - Macro recall: 0.9821 - Macro precision: 0.9845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Weighted recall | Weighted precision | Micro f1 | Micro recall | Micro precision | Macro f1 | Macro recall | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:---------------:|:------------------:|:--------:|:------------:|:---------------:|:--------:|:------------:|:---------------:| | 0.5253 | 1.0 | 153 | 0.1270 | 0.9642 | 0.9647 | 0.9642 | 0.9681 | 0.9642 | 0.9642 | 0.9642 | 0.9633 | 0.9662 | 0.9633 | | 0.0921 | 2.0 | 306 | 0.0878 | 0.9805 | 0.9805 | 0.9805 | 0.9807 | 0.9805 | 0.9805 | 0.9805 | 0.9803 | 0.9791 | 0.9818 | | 0.0413 | 3.0 | 459 | 0.0590 | 0.9870 | 0.9870 | 0.9870 | 0.9875 | 0.9870 | 0.9870 | 0.9870 | 0.9860 | 0.9869 | 0.9857 | | 0.0261 | 4.0 | 612 | 0.0523 | 0.9902 | 0.9902 | 0.9902 | 0.9904 | 0.9902 | 0.9902 | 0.9902 | 0.9896 | 0.9896 | 0.9900 | | 0.012 | 5.0 | 765 | 0.0293 | 0.9837 | 0.9837 | 0.9837 | 0.9839 | 0.9837 | 0.9837 | 0.9837 | 0.9832 | 0.9821 | 0.9845 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.6.dev0 - Tokenizers 0.13.3