DrishtiSharma commited on
Commit
6dede90
1 Parent(s): 7fdc441

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-bas-v1
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-bas-v1
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5997
20
+ - Wer: 0.3870
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.000111
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 100
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 12.7076 | 5.26 | 200 | 3.6361 | 1.0 |
56
+ | 3.1657 | 10.52 | 400 | 3.0101 | 1.0 |
57
+ | 2.3987 | 15.78 | 600 | 0.9125 | 0.6774 |
58
+ | 1.0079 | 21.05 | 800 | 0.6477 | 0.5352 |
59
+ | 0.7392 | 26.31 | 1000 | 0.5432 | 0.4929 |
60
+ | 0.6114 | 31.57 | 1200 | 0.5498 | 0.4639 |
61
+ | 0.5222 | 36.83 | 1400 | 0.5220 | 0.4561 |
62
+ | 0.4648 | 42.1 | 1600 | 0.5586 | 0.4289 |
63
+ | 0.4103 | 47.36 | 1800 | 0.5337 | 0.4082 |
64
+ | 0.3692 | 52.62 | 2000 | 0.5421 | 0.3861 |
65
+ | 0.3403 | 57.88 | 2200 | 0.5549 | 0.4096 |
66
+ | 0.3011 | 63.16 | 2400 | 0.5833 | 0.3925 |
67
+ | 0.2932 | 68.42 | 2600 | 0.5674 | 0.3815 |
68
+ | 0.2696 | 73.68 | 2800 | 0.5734 | 0.3889 |
69
+ | 0.2496 | 78.94 | 3000 | 0.5968 | 0.3985 |
70
+ | 0.2289 | 84.21 | 3200 | 0.5888 | 0.3893 |
71
+ | 0.2091 | 89.47 | 3400 | 0.5849 | 0.3852 |
72
+ | 0.2005 | 94.73 | 3600 | 0.5938 | 0.3875 |
73
+ | 0.1876 | 99.99 | 3800 | 0.5997 | 0.3870 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.16.1
79
+ - Pytorch 1.10.0+cu111
80
+ - Datasets 1.18.2
81
+ - Tokenizers 0.11.0