DrishtiSharma
commited on
Commit
•
01e8f40
1
Parent(s):
bd0d96d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: xls-r-es-test-lm-finetuned-sentiment-mesd
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# xls-r-es-test-lm-finetuned-sentiment-mesd
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [glob-asr/xls-r-es-test-lm](https://huggingface.co/glob-asr/xls-r-es-test-lm) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.7851
|
20 |
+
- Accuracy: 0.2385
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 1.25e-05
|
40 |
+
- train_batch_size: 64
|
41 |
+
- eval_batch_size: 40
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 4
|
44 |
+
- total_train_batch_size: 256
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- num_epochs: 20
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
54 |
+
| No log | 0.86 | 3 | 1.7876 | 0.1923 |
|
55 |
+
| 1.9709 | 1.86 | 6 | 1.7869 | 0.2 |
|
56 |
+
| 1.9709 | 2.86 | 9 | 1.7859 | 0.2308 |
|
57 |
+
| 2.146 | 3.86 | 12 | 1.7851 | 0.2385 |
|
58 |
+
| 1.9622 | 4.86 | 15 | 1.7842 | 0.1923 |
|
59 |
+
| 1.9622 | 5.86 | 18 | 1.7834 | 0.1769 |
|
60 |
+
| 2.137 | 6.86 | 21 | 1.7823 | 0.1923 |
|
61 |
+
| 2.137 | 7.86 | 24 | 1.7812 | 0.1923 |
|
62 |
+
| 2.1297 | 8.86 | 27 | 1.7800 | 0.1846 |
|
63 |
+
| 1.9502 | 9.86 | 30 | 1.7787 | 0.1846 |
|
64 |
+
| 1.9502 | 10.86 | 33 | 1.7772 | 0.1846 |
|
65 |
+
| 2.1234 | 11.86 | 36 | 1.7760 | 0.1846 |
|
66 |
+
| 2.1234 | 12.86 | 39 | 1.7748 | 0.1846 |
|
67 |
+
| 2.1186 | 13.86 | 42 | 1.7736 | 0.1846 |
|
68 |
+
| 1.9401 | 14.86 | 45 | 1.7725 | 0.1846 |
|
69 |
+
| 1.9401 | 15.86 | 48 | 1.7715 | 0.1923 |
|
70 |
+
| 2.112 | 16.86 | 51 | 1.7706 | 0.1923 |
|
71 |
+
| 2.112 | 17.86 | 54 | 1.7701 | 0.1923 |
|
72 |
+
| 2.1094 | 18.86 | 57 | 1.7697 | 0.2 |
|
73 |
+
| 1.934 | 19.86 | 60 | 1.7696 | 0.2 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.17.0
|
79 |
+
- Pytorch 1.10.0+cu111
|
80 |
+
- Datasets 2.0.0
|
81 |
+
- Tokenizers 0.11.6
|