Update image_to_caption.py
Browse files- image_to_caption.py +72 -42
image_to_caption.py
CHANGED
@@ -10,6 +10,7 @@ from transformers import AutoModelForCausalLM, LlamaTokenizer
|
|
10 |
import json
|
11 |
import traceback
|
12 |
import math
|
|
|
13 |
|
14 |
torch.set_grad_enabled(False)
|
15 |
|
@@ -125,7 +126,7 @@ def update_and_save_config():
|
|
125 |
'temperature': temperature_var.get(),
|
126 |
'top_k': top_k_var.get(),
|
127 |
'top_p': float(top_p_value) if top_p_value is not None else None,
|
128 |
-
'bit_precision': bit_precision_var.get(), #
|
129 |
'thread_count': thread_count_var.get(),
|
130 |
'batch_size': batch_size_var.get(),
|
131 |
'prepend_text': prepend_text_var.get(),
|
@@ -150,7 +151,7 @@ def load_config_from_json():
|
|
150 |
top_k_var.set(config_entry.get('top_k', 50))
|
151 |
top_p_var.set(config_entry.get('top_p', 0.95))
|
152 |
bit_precision_var.set(config_entry.get('bit_precision', 8)) # Tải bit_precision
|
153 |
-
thread_count_var.set(config_entry.get('thread_count',
|
154 |
batch_size_var.set(config_entry.get('batch_size', 1))
|
155 |
prepend_text_var.set(config_entry.get('prepend_text', ''))
|
156 |
append_text_var.set(config_entry.get('append_text', ''))
|
@@ -290,7 +291,7 @@ def open_image_to_caption():
|
|
290 |
temperature_var = tk.DoubleVar(value=1.0)
|
291 |
top_k_var = tk.IntVar(value=50)
|
292 |
top_p_var = tk.DoubleVar(value=0.95)
|
293 |
-
thread_count_var = tk.IntVar(value=
|
294 |
precision_var = tk.IntVar(value=1)
|
295 |
batch_size_var = tk.IntVar(value=1)
|
296 |
prepend_text_var = tk.StringVar()
|
@@ -482,7 +483,7 @@ def generate_caption(image_path, save_directory, q):
|
|
482 |
load_model()
|
483 |
|
484 |
filename = os.path.splitext(os.path.basename(image_path))[0]
|
485 |
-
caption_file_path = os.path.join(save_directory, f"{filename}.txt")
|
486 |
|
487 |
# Kiểm tra các lựa chọn của người dùng
|
488 |
if os.path.exists(caption_file_path):
|
@@ -497,10 +498,21 @@ def generate_caption(image_path, save_directory, q):
|
|
497 |
else:
|
498 |
existing_caption = ""
|
499 |
|
|
|
500 |
image = PILImage.open(image_path).convert('RGB')
|
501 |
if not isinstance(image, PILImage.Image):
|
502 |
raise ValueError(f"Expected image to be of type PIL.Image.Image, but got {type(image)}")
|
503 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
504 |
inputs = model.build_conversation_input_ids(
|
505 |
tokenizer,
|
506 |
query=prompt_var.get(),
|
@@ -510,14 +522,14 @@ def generate_caption(image_path, save_directory, q):
|
|
510 |
|
511 |
# Điều chỉnh dtype dựa trên bit_precision
|
512 |
if bit_precision_var.get() == 32:
|
513 |
-
image_tensor = inputs['images'][0].to(
|
514 |
else:
|
515 |
-
image_tensor = inputs['images'][0].to(
|
516 |
|
517 |
inputs = {
|
518 |
-
'input_ids': inputs['input_ids'].unsqueeze(0).to(
|
519 |
-
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(
|
520 |
-
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(
|
521 |
'images': [[image_tensor]],
|
522 |
}
|
523 |
|
@@ -530,7 +542,8 @@ def generate_caption(image_path, save_directory, q):
|
|
530 |
"num_beams": precision_var.get()
|
531 |
}
|
532 |
|
533 |
-
|
|
|
534 |
outputs = model.generate(**inputs, **gen_kwargs)
|
535 |
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
536 |
new_caption = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
@@ -541,7 +554,7 @@ def generate_caption(image_path, save_directory, q):
|
|
541 |
file.write(final_caption)
|
542 |
|
543 |
q.put(image_path)
|
544 |
-
|
545 |
except torch.cuda.OutOfMemoryError as e:
|
546 |
torch.cuda.empty_cache()
|
547 |
error_message = f"CUDA OutOfMemoryError: {traceback.format_exc()}"
|
@@ -553,45 +566,55 @@ def generate_caption(image_path, save_directory, q):
|
|
553 |
print(error_message)
|
554 |
q.put(error_message)
|
555 |
error_messages.append(error_message)
|
|
|
|
|
|
|
|
|
|
|
556 |
|
557 |
|
558 |
def worker(save_directory, num_threads, batch_size):
|
559 |
try:
|
560 |
progress.set(0)
|
561 |
-
threads = []
|
562 |
-
|
563 |
num_batches = math.ceil(len(selected_files) / batch_size)
|
564 |
-
batch_size_per_thread = max(1, batch_size // num_threads)
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
585 |
|
586 |
q.put(None)
|
587 |
except Exception as e:
|
588 |
if not stop_processing:
|
589 |
-
q.put(e)
|
590 |
|
591 |
def generate_captions_for_batch(batch, save_directory, q):
|
592 |
for image_path in batch:
|
593 |
generate_caption(image_path, save_directory, q)
|
594 |
|
|
|
595 |
def update_progress():
|
596 |
try:
|
597 |
completed = 0
|
@@ -758,7 +781,8 @@ def update_image_preview(content_canvas):
|
|
758 |
file_label = tk.Label(caption_frame, text=os.path.basename(file_path), font=('Helvetica', 12), wraplength=300, justify="left")
|
759 |
file_label.grid(row=i*2, column=1, padx=5, pady=5, sticky="nsew")
|
760 |
|
761 |
-
|
|
|
762 |
if os.path.exists(caption_file):
|
763 |
with open(caption_file, 'r', encoding='utf-8') as file:
|
764 |
caption_text = file.read()
|
@@ -817,7 +841,8 @@ def go_to_page(page_number, content_canvas):
|
|
817 |
messagebox.showerror("Invalid Input", "Please enter a valid integer for the page number.")
|
818 |
|
819 |
def save_caption(file_path, caption_text):
|
820 |
-
|
|
|
821 |
try:
|
822 |
with open(output_path, 'w', encoding='utf-8') as file:
|
823 |
file.write(caption_text.strip())
|
@@ -840,7 +865,8 @@ def search_captions():
|
|
840 |
update_image_preview(content_canvas)
|
841 |
|
842 |
def search_score(file_path, search_term):
|
843 |
-
|
|
|
844 |
try:
|
845 |
if os.path.exists(caption_file):
|
846 |
with open(caption_file, 'r', encoding='utf-8') as file:
|
@@ -866,7 +892,8 @@ def add_to_captions(position):
|
|
866 |
return
|
867 |
|
868 |
for file_path in selected_files:
|
869 |
-
|
|
|
870 |
if os.path.exists(caption_file):
|
871 |
with open(caption_file, 'r+', encoding='utf-8') as file:
|
872 |
caption_text = file.read()
|
@@ -889,7 +916,8 @@ def delete_keyword_from_captions():
|
|
889 |
return
|
890 |
|
891 |
for file_path in selected_files:
|
892 |
-
|
|
|
893 |
if os.path.exists(caption_file):
|
894 |
with open(caption_file, 'r+', encoding='utf-8') as file:
|
895 |
caption_text = file.read().lower().replace(keyword, "")
|
@@ -910,7 +938,8 @@ def delete_images_with_keyword():
|
|
910 |
|
911 |
files_to_delete = []
|
912 |
for file_path in selected_files:
|
913 |
-
|
|
|
914 |
if os.path.exists(caption_file):
|
915 |
with open(caption_file, 'r', encoding='utf-8') as file:
|
916 |
caption_text = file.read().lower()
|
@@ -920,7 +949,8 @@ def delete_images_with_keyword():
|
|
920 |
for file_path in files_to_delete:
|
921 |
try:
|
922 |
os.remove(file_path)
|
923 |
-
|
|
|
924 |
if os.path.exists(caption_file):
|
925 |
os.remove(caption_file)
|
926 |
except Exception as e:
|
|
|
10 |
import json
|
11 |
import traceback
|
12 |
import math
|
13 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
14 |
|
15 |
torch.set_grad_enabled(False)
|
16 |
|
|
|
126 |
'temperature': temperature_var.get(),
|
127 |
'top_k': top_k_var.get(),
|
128 |
'top_p': float(top_p_value) if top_p_value is not None else None,
|
129 |
+
'bit_precision': bit_precision_var.get(), # Tải bit_precision
|
130 |
'thread_count': thread_count_var.get(),
|
131 |
'batch_size': batch_size_var.get(),
|
132 |
'prepend_text': prepend_text_var.get(),
|
|
|
151 |
top_k_var.set(config_entry.get('top_k', 50))
|
152 |
top_p_var.set(config_entry.get('top_p', 0.95))
|
153 |
bit_precision_var.set(config_entry.get('bit_precision', 8)) # Tải bit_precision
|
154 |
+
thread_count_var.set(config_entry.get('thread_count', 1))
|
155 |
batch_size_var.set(config_entry.get('batch_size', 1))
|
156 |
prepend_text_var.set(config_entry.get('prepend_text', ''))
|
157 |
append_text_var.set(config_entry.get('append_text', ''))
|
|
|
291 |
temperature_var = tk.DoubleVar(value=1.0)
|
292 |
top_k_var = tk.IntVar(value=50)
|
293 |
top_p_var = tk.DoubleVar(value=0.95)
|
294 |
+
thread_count_var = tk.IntVar(value=1)
|
295 |
precision_var = tk.IntVar(value=1)
|
296 |
batch_size_var = tk.IntVar(value=1)
|
297 |
prepend_text_var = tk.StringVar()
|
|
|
483 |
load_model()
|
484 |
|
485 |
filename = os.path.splitext(os.path.basename(image_path))[0]
|
486 |
+
caption_file_path = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption
|
487 |
|
488 |
# Kiểm tra các lựa chọn của người dùng
|
489 |
if os.path.exists(caption_file_path):
|
|
|
498 |
else:
|
499 |
existing_caption = ""
|
500 |
|
501 |
+
# Xử lý ảnh trên CPU trước khi chuyển lên GPU
|
502 |
image = PILImage.open(image_path).convert('RGB')
|
503 |
if not isinstance(image, PILImage.Image):
|
504 |
raise ValueError(f"Expected image to be of type PIL.Image.Image, but got {type(image)}")
|
505 |
|
506 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
507 |
+
|
508 |
+
# Kiểm tra nếu bit_precision là 4 hoặc 8
|
509 |
+
if bit_precision_var.get() in [4, 8]:
|
510 |
+
# Không sử dụng `.to()` cho mô hình khi đang ở chế độ 4-bit hoặc 8-bit
|
511 |
+
pass
|
512 |
+
else:
|
513 |
+
model.to(device)
|
514 |
+
|
515 |
+
# Xử lý dtype và inputs tương ứng
|
516 |
inputs = model.build_conversation_input_ids(
|
517 |
tokenizer,
|
518 |
query=prompt_var.get(),
|
|
|
522 |
|
523 |
# Điều chỉnh dtype dựa trên bit_precision
|
524 |
if bit_precision_var.get() == 32:
|
525 |
+
image_tensor = inputs['images'][0].to(device).to(torch.float32)
|
526 |
else:
|
527 |
+
image_tensor = inputs['images'][0].to(device).to(torch.float16)
|
528 |
|
529 |
inputs = {
|
530 |
+
'input_ids': inputs['input_ids'].unsqueeze(0).to(device),
|
531 |
+
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(device),
|
532 |
+
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(device),
|
533 |
'images': [[image_tensor]],
|
534 |
}
|
535 |
|
|
|
542 |
"num_beams": precision_var.get()
|
543 |
}
|
544 |
|
545 |
+
# Sử dụng torch.amp.autocast để cải thiện hiệu suất trên GPU
|
546 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16 if bit_precision_var.get() != 32 else torch.float32):
|
547 |
outputs = model.generate(**inputs, **gen_kwargs)
|
548 |
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
549 |
new_caption = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
554 |
file.write(final_caption)
|
555 |
|
556 |
q.put(image_path)
|
557 |
+
|
558 |
except torch.cuda.OutOfMemoryError as e:
|
559 |
torch.cuda.empty_cache()
|
560 |
error_message = f"CUDA OutOfMemoryError: {traceback.format_exc()}"
|
|
|
566 |
print(error_message)
|
567 |
q.put(error_message)
|
568 |
error_messages.append(error_message)
|
569 |
+
finally:
|
570 |
+
if stop_processing or bit_precision_var.get() not in [4, 8]:
|
571 |
+
model.to('cpu')
|
572 |
+
torch.cuda.empty_cache()
|
573 |
+
|
574 |
|
575 |
|
576 |
def worker(save_directory, num_threads, batch_size):
|
577 |
try:
|
578 |
progress.set(0)
|
|
|
|
|
579 |
num_batches = math.ceil(len(selected_files) / batch_size)
|
580 |
+
batch_size_per_thread = max(1, batch_size // num_threads)
|
581 |
+
|
582 |
+
def process_batch(thread_batch):
|
583 |
+
generate_captions_for_batch(thread_batch, save_directory, q)
|
584 |
+
|
585 |
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
586 |
+
for batch_index in range(num_batches):
|
587 |
+
if stop_processing:
|
588 |
+
break
|
589 |
+
|
590 |
+
start_index = batch_index * batch_size
|
591 |
+
end_index = min(start_index + batch_size, len(selected_files))
|
592 |
+
batch = selected_files[start_index:end_index]
|
593 |
+
|
594 |
+
futures = []
|
595 |
+
for i in range(0, len(batch), batch_size_per_thread):
|
596 |
+
thread_batch = batch[i:i + batch_size_per_thread]
|
597 |
+
futures.append(executor.submit(process_batch, thread_batch))
|
598 |
+
|
599 |
+
# Đợi các công việc trong batch hiện tại hoàn thành
|
600 |
+
for future in as_completed(futures):
|
601 |
+
try:
|
602 |
+
future.result() # Xử lý lỗi nếu có xảy ra trong quá trình xử lý batch
|
603 |
+
except Exception as e:
|
604 |
+
q.put(f"Error processing batch: {e}")
|
605 |
+
if stop_processing:
|
606 |
+
break
|
607 |
|
608 |
q.put(None)
|
609 |
except Exception as e:
|
610 |
if not stop_processing:
|
611 |
+
q.put(f"Worker encountered an error: {e}")
|
612 |
|
613 |
def generate_captions_for_batch(batch, save_directory, q):
|
614 |
for image_path in batch:
|
615 |
generate_caption(image_path, save_directory, q)
|
616 |
|
617 |
+
|
618 |
def update_progress():
|
619 |
try:
|
620 |
completed = 0
|
|
|
781 |
file_label = tk.Label(caption_frame, text=os.path.basename(file_path), font=('Helvetica', 12), wraplength=300, justify="left")
|
782 |
file_label.grid(row=i*2, column=1, padx=5, pady=5, sticky="nsew")
|
783 |
|
784 |
+
filename = os.path.splitext(os.path.basename(file_path))[0]
|
785 |
+
caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption
|
786 |
if os.path.exists(caption_file):
|
787 |
with open(caption_file, 'r', encoding='utf-8') as file:
|
788 |
caption_text = file.read()
|
|
|
841 |
messagebox.showerror("Invalid Input", "Please enter a valid integer for the page number.")
|
842 |
|
843 |
def save_caption(file_path, caption_text):
|
844 |
+
filename = os.path.splitext(os.path.basename(file_path))[0]
|
845 |
+
output_path = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption
|
846 |
try:
|
847 |
with open(output_path, 'w', encoding='utf-8') as file:
|
848 |
file.write(caption_text.strip())
|
|
|
865 |
update_image_preview(content_canvas)
|
866 |
|
867 |
def search_score(file_path, search_term):
|
868 |
+
filename = os.path.splitext(os.path.basename(file_path))[0]
|
869 |
+
caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption
|
870 |
try:
|
871 |
if os.path.exists(caption_file):
|
872 |
with open(caption_file, 'r', encoding='utf-8') as file:
|
|
|
892 |
return
|
893 |
|
894 |
for file_path in selected_files:
|
895 |
+
filename = os.path.splitext(os.path.basename(file_path))[0]
|
896 |
+
caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption
|
897 |
if os.path.exists(caption_file):
|
898 |
with open(caption_file, 'r+', encoding='utf-8') as file:
|
899 |
caption_text = file.read()
|
|
|
916 |
return
|
917 |
|
918 |
for file_path in selected_files:
|
919 |
+
filename = os.path.splitext(os.path.basename(file_path))[0]
|
920 |
+
caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption
|
921 |
if os.path.exists(caption_file):
|
922 |
with open(caption_file, 'r+', encoding='utf-8') as file:
|
923 |
caption_text = file.read().lower().replace(keyword, "")
|
|
|
938 |
|
939 |
files_to_delete = []
|
940 |
for file_path in selected_files:
|
941 |
+
filename = os.path.splitext(os.path.basename(file_path))[0]
|
942 |
+
caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption
|
943 |
if os.path.exists(caption_file):
|
944 |
with open(caption_file, 'r', encoding='utf-8') as file:
|
945 |
caption_text = file.read().lower()
|
|
|
949 |
for file_path in files_to_delete:
|
950 |
try:
|
951 |
os.remove(file_path)
|
952 |
+
filename = os.path.splitext(os.path.basename(file_path))[0]
|
953 |
+
caption_file = os.path.join(save_directory, f"{filename}.txt") # Thay đổi tên tệp caption
|
954 |
if os.path.exists(caption_file):
|
955 |
os.remove(caption_file)
|
956 |
except Exception as e:
|