File size: 13,763 Bytes
1b0abd6
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd897f855a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd897f85630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd897f856c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd897f85750>", "_build": "<function ActorCriticPolicy._build at 0x7fd897f857e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd897f85870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd897f85900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd897f85990>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd897f85a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd897f85ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd897f85b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd897f85bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd897f81bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687960284512252693, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1vSD0p6GS6LlI7OLx+CjI5Qk279lFZtwAAgD8AAIA/ZnA+vNN9Xz+7Z4O9T5ZgvgEyuDygERU8AAAAAAAAAADTV14+cRfwPTAZS772N0C+v0N5vd8CKDwAAAAAAAAAAGaxqz1Ia5e6BcJ5O4NspzYF9dO5Uo+OugAAgD8AAIA/czLpPVzzdbqz8pY6jbDwNqxOgboAZKq5AACAPwAAgD/acYG9FCaBujsB8bpLBtq1li9yu86ODDoAAIA/AACAP0ZeIT7udoG89iMCu2VvQTn8GOO9iuE0OgAAgD8AAIA/+s8vvsHUNT7A1XY+ugCEvoUaC7wFRJQ9AAAAAAAAAADNNZ49w6EwujOSozyl2wM1Mi88O6JoBzQAAAAAAAAAAGb78jwUGIy60N2SO547NzZuO6I6k4WqugAAgD8AAIA/Mwz3vDXRlD67E4s97DdQvm42ibyIf3k9AAAAAAAAAADNVQY+3BSLP1QsiD6aFFm+a/vMPVaLjz0AAAAAAAAAAACuO7wU7Ie6O25LumA+R7UmPmY6G8NsOQAAgD8AAIA/ZiyoPeH8q7rL6405uuKJNG9eELoXpqK4AACAPwAAgD+A4Ag+zRQGPnGNl701RHi+l4csu71hGj0AAAAAAAAAAGaQdzxUy6S8N0HHPfY8gDzYwRA+4CtMvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF2WeE7GNrGMAWyUTegDjAF0lEdApsIhHuqm0nV9lChoBkfAHHqnFYMfBGgHTSABaAhHQKbDnvkRzzV1fZQoaAZHQGUJccdYGMZoB03oA2gIR0CmxLDeKsMidX2UKGgGR0Bc2QXqJMxoaAdN6ANoCEdApsabdgv12HV9lChoBkdAYTRLJSzgM2gHTegDaAhHQKbJkXDWK/F1fZQoaAZHQGDKBFVktmNoB03oA2gIR0Cmyth1LamGdX2UKGgGR0Bj2ekDZDiPaAdN6ANoCEdAptOO6/ZdwHV9lChoBkdAYqiLm6oVEmgHTegDaAhHQKbcEOqebut1fZQoaAZHQGAa8hcJMQFoB03oA2gIR0Cm3Zzyz5XVdX2UKGgGR0Bj6MSAYpDvaAdN6ANoCEdApt6AvL5h0HV9lChoBkdAZr/+DOC5E2gHTegDaAhHQKbepZWaMJh1fZQoaAZHQGYopw0fozNoB03oA2gIR0Cm4DiLdepodX2UKGgGR0BhgjY5DJEIaAdN6ANoCEdApuI6CDmKZXV9lChoBkdAZE32hZha1WgHTegDaAhHQKbjJMM7U5N1fZQoaAZHQGII2y1NQCVoB03oA2gIR0Cm43suOCGvdX2UKGgGR0BkhACKaXruaAdN6ANoCEdApuOI66reZXV9lChoBkdAYB98Q7LdN2gHTegDaAhHQKbuXSBshxJ1fZQoaAZHQGEZKHoHLRtoB03oA2gIR0Cm79J+2E00dX2UKGgGR0Bg/3f0mMOxaAdN6ANoCEdApvDZwqAjIXV9lChoBkdAYniP5pJwsGgHTegDaAhHQKbzFV0cOsl1fZQoaAZHQGFeuJtSAH5oB03oA2gIR0Cm9yB0ZFXrdX2UKGgGR0BgQLO1OTJRaAdN6ANoCEdApvjX8EV32XV9lChoBkdAZiYwIt16mmgHTegDaAhHQKcCxQN0/4Z1fZQoaAZHQGGNCvovBadoB03oA2gIR0CnCOvKdQO4dX2UKGgGR0BerI46wMYuaAdN6ANoCEdApwn3FNtZWHV9lChoBkdAWxXYjB2wFGgHTegDaAhHQKcKmSBbwBp1fZQoaAZHQGbqQ0O3DvVoB03oA2gIR0CnCru89Oh1dX2UKGgGR0BhbhOgxrSFaAdN6ANoCEdApww+wcHW0HV9lChoBkdAZN7AlfJFLGgHTegDaAhHQKcOKdfb9Ih1fZQoaAZHQGZltfPX05FoB03oA2gIR0CnDxH/tICmdX2UKGgGR0BiO5Lsa86FaAdN6ANoCEdApw9puwX67HV9lChoBkdAYesqFyq+8GgHTegDaAhHQKcPeA0bcXZ1fZQoaAZHQGHevGQ0XP9oB03oA2gIR0CnHR7ONYKZdX2UKGgGR0Bi203Ov+wUaAdN6ANoCEdApx54msvIwXV9lChoBkdAX96FM7EHdGgHTegDaAhHQKcffHVf/m11fZQoaAZHQGB2cLBsQ/ZoB03oA2gIR0CnIUBmXgLrdX2UKGgGR0BkZn1YhdMTaAdN6ANoCEdApyQwJPZZjnV9lChoBkdAYPmpVjqfOGgHTegDaAhHQKclVtu1ndx1fZQoaAZHQGU9NpEhJRRoB03oA2gIR0CnLdeyzHCGdX2UKGgGR0Bg/8XBP9DQaAdN6ANoCEdApzYzErGzbHV9lChoBkdAZgHub7TDwmgHTegDaAhHQKc3lOqNp/R1fZQoaAZHQGWlOnMt9QZoB03oA2gIR0CnODoRh+fAdX2UKGgGR0BmiorFwT/RaAdN6ANoCEdApzheBFuvU3V9lChoBkdAZhieZof0VmgHTegDaAhHQKc525mRNh51fZQoaAZHQGUax9PUKAtoB03oA2gIR0CnO9vJ7sv7dX2UKGgGR0BfuIgA6uGLaAdN6ANoCEdApzzPfl6qsHV9lChoBkdAZbD17IDHO2gHTegDaAhHQKc9NuWrwOR1fZQoaAZHQGH3VrRBu4xoB03oA2gIR0CnPUX2VVxTdX2UKGgGR0Bab4f4h2W6aAdN6ANoCEdAp0BiU/wAl3V9lChoBkdAYHmCVbA1vWgHTegDaAhHQKdJuYMOPNp1fZQoaAZHQGKFu3+dbxFoB03oA2gIR0CnSqwSJ0nxdX2UKGgGR0BkuVutOmBOaAdN6ANoCEdAp0zCfBeok3V9lChoBkdAZjTCqIacZ2gHTegDaAhHQKdQc50bLlp1fZQoaAZHQGT8Fgtvn8toB03oA2gIR0CnUe/r8iwCdX2UKGgGR0BkwhLAYYR/aAdN6ANoCEdAp1qjr7fpEHV9lChoBkdAYbuh1Tzd12gHTegDaAhHQKdft4bCJoF1fZQoaAZHQGECIPkJa7poB03oA2gIR0CnYKRIz3yqdX2UKGgGR0BlP/pbD/EPaAdN6ANoCEdAp2EzeQ+2VnV9lChoBkdAZh1eyiVSoGgHTegDaAhHQKdhUx20Re11fZQoaAZHQF8fzH0btJFoB03oA2gIR0CnYrDSXt0FdX2UKGgGR0BmOvWH1vl2aAdN6ANoCEdAp2RucvugH3V9lChoBkdAYE2s/Y8MeGgHTegDaAhHQKdlN/I8yN51fZQoaAZHQGDaWEbo8p1oB03oA2gIR0CnZYZuqFRHdX2UKGgGR0BlPFVmz0HyaAdN6ANoCEdAp2WSq814xHV9lChoBkdAWd7/Mnqmj2gHTegDaAhHQKdoaA1ejVR1fZQoaAZHQGXeQmE4//xoB03oA2gIR0CndDM/IKc/dX2UKGgGR0Bj5Ct5le4TaAdN6ANoCEdAp3VG6K+BYnV9lChoBkdAY5/VQQ+UyGgHTegDaAhHQKd3Ebvw3Hd1fZQoaAZHQGRLvSUkfLdoB03oA2gIR0Cneg5Pdl/ZdX2UKGgGR0BnOa8Djin6aAdN6ANoCEdAp3s+KXOW0XV9lChoBkdAR7lG9YfW+WgHTRMBaAhHQKd+FKDCgsd1fZQoaAZHQGULIYvWYnhoB03oA2gIR0Cng1Qr1/UfdX2UKGgGR0Bi036ZYxL1aAdN6ANoCEdAp4neVkc0cnV9lChoBkdAYi9CF9KEnWgHTegDaAhHQKeLRda+vhZ1fZQoaAZHQGFaQ4jrzGxoB03oA2gIR0CnjDVJUYKqdX2UKGgGR0Bi2ze0ojOcaAdN6ANoCEdAp4xmITGo73V9lChoBkdAYtRaPjn3c2gHTegDaAhHQKeOpoL5RCR1fZQoaAZHQEBeji4rjHZoB00RAWgIR0Cnj1+PaL4vdX2UKGgGR0Bh7jMX7+DOaAdN6ANoCEdAp5FIGW2PUHV9lChoBkdAYiJWluWKM2gHTegDaAhHQKeSUXwb2lF1fZQoaAZHQGCZb1qWTotoB03oA2gIR0CnkrJuuRs/dX2UKGgGR0BjNb2USqVAaAdN6ANoCEdAp5LBArxy4nV9lChoBkdAZeseHzpX62gHTegDaAhHQKeV0b2Dg651fZQoaAZHQGPFmtyPuG9oB03oA2gIR0Cnl1JNTLntdX2UKGgGR0Biu6RU3n6maAdN6ANoCEdAp6JciD/VAnV9lChoBkdAYXgtmL9/BmgHTegDaAhHQKemFIlMRHx1fZQoaAZHQGACXyiEg4hoB03oA2gIR0Cnp+OsLfDUdX2UKGgGR0Bgnca6z3RHaAdN6ANoCEdAp6wBi7TUiXV9lChoBkdAYtNLVWjoIWgHTegDaAhHQKe4EECeVcF1fZQoaAZHQGcm3FUADJVoB03oA2gIR0CnuRyFGoaUdX2UKGgGR0Bn9y+i8FpxaAdN6ANoCEdAp7nLZezD43V9lChoBkdAY9z/aQFLWmgHTegDaAhHQKe59EBKcut1fZQoaAZHQFz9VsDW9UVoB03oA2gIR0Cnu31oHs1LdX2UKGgGR0Bgiy37UG3XaAdN6ANoCEdAp7v+bobGWHV9lChoBkdAZNqmqHXVb2gHTegDaAhHQKe9b5xBE8d1fZQoaAZHQGWHIatLcsVoB03oA2gIR0CnvlxhttQ9dX2UKGgGR0BinQgX/HYIaAdN6ANoCEdAp76/Ytg8bXV9lChoBkdAYPRg3Lmp2mgHTegDaAhHQKe+zQrtmcx1fZQoaAZHQGDlSUTtb9toB03oA2gIR0CnwbnnuAqedX2UKGgGR0BiLd7rs0HhaAdN6ANoCEdAp8NkTrVvuXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}