DukeNLP commited on
Commit
5ed07e7
·
verified ·
1 Parent(s): e7fd923

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -73
README.md CHANGED
@@ -5,10 +5,9 @@ tags: []
5
 
6
  # Model Card for Model ID
7
 
8
- The Prob-Gen-8B Large Language Model (LLM) is a fine-tuned model of the [Llama-3-8B from Meta](https://huggingface.co/meta-llama/Meta-Llama-3-8B). The intend of the Prob-Gen-8B LLM is to generate math problems under different contexts and tested knowledge for 8th graders.
9
-
10
-
11
 
 
12
  ## Model Details
13
 
14
  ### Model Description
@@ -25,7 +24,7 @@ The Prob-Gen-8B Large Language Model (LLM) is a fine-tuned model of the [Llama-3
25
 
26
  - **Repository:** [More Information Needed]
27
  - **Paper [optional]:** [More Information Needed]
28
- - **Demo [optional]:** [More Information Needed]
29
 
30
  ## Uses
31
 
@@ -67,19 +66,20 @@ model_output = model.generate(
67
  tokenizer.batch_decode(model_output)
68
  ```
69
 
70
- ## Bias, Risks, and Limitations
71
 
72
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
73
 
74
- [More Information Needed]
75
 
76
- ### Recommendations
77
 
78
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
79
 
80
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
81
 
82
- ## Training Details
83
 
84
  ### Training Data
85
 
@@ -103,13 +103,13 @@ The model is finetuned on 3,644 GPT-4 generated 8th-grade problems, which are al
103
  ```
104
 
105
  ### Prompting
106
- The model is trained by the following prompt:
107
  ``` python
108
  """Please generate a math problem and 2 to 4 options for 8th graders with the following requirements:
109
  Problem context: <specified-context>
110
  Tested knowledge: <specified-knowledge>"""
111
  ```
112
- Where the contexts shown in the dataset are:
113
  ```
114
  "Video Games",
115
  "Fashion",
@@ -121,7 +121,7 @@ Where the contexts shown in the dataset are:
121
  "Social Media",
122
  "Environmental issues"
123
  ```
124
- And the tested knowledge shown in the dataset are:
125
  ```
126
  "Operations with Rational Numbers",
127
  "Expressions and Equations",
@@ -154,7 +154,7 @@ And the tested knowledge shown in the dataset are:
154
  "Representing Proportional Relationships"
155
  ```
156
 
157
- ### Results
158
 
159
  Here is an example passage from the training data:
160
  ```
@@ -182,63 +182,3 @@ Is correct: False
182
  Option 4: \(a = 2\) and \(b = 8\)
183
  Is correct: False
184
  ```
185
-
186
- ## Environmental Impact
187
-
188
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
189
-
190
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
191
-
192
- - **Hardware Type:** [More Information Needed]
193
- - **Hours used:** [More Information Needed]
194
- - **Cloud Provider:** [More Information Needed]
195
- - **Compute Region:** [More Information Needed]
196
- - **Carbon Emitted:** [More Information Needed]
197
-
198
- ## Technical Specifications [optional]
199
-
200
- ### Model Architecture and Objective
201
-
202
- [More Information Needed]
203
-
204
- ### Compute Infrastructure
205
-
206
- [More Information Needed]
207
-
208
- #### Hardware
209
-
210
- [More Information Needed]
211
-
212
- #### Software
213
-
214
- [More Information Needed]
215
-
216
- ## Citation [optional]
217
-
218
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
219
-
220
- **BibTeX:**
221
-
222
- [More Information Needed]
223
-
224
- **APA:**
225
-
226
- [More Information Needed]
227
-
228
- ## Glossary [optional]
229
-
230
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
231
-
232
- [More Information Needed]
233
-
234
- ## More Information [optional]
235
-
236
- [More Information Needed]
237
-
238
- ## Model Card Authors [optional]
239
-
240
- [More Information Needed]
241
-
242
- ## Model Card Contact
243
-
244
- [More Information Needed]
 
5
 
6
  # Model Card for Model ID
7
 
8
+ This model is a fine-tuned based on [Llama-3-8B from Meta](https://huggingface.co/meta-llama/Meta-Llama-3-8B) for 3,644 GPT-4 generated grade school math word problems. The model generates math word problems with multiple choices under given contexts.
 
 
9
 
10
+ <!--
11
  ## Model Details
12
 
13
  ### Model Description
 
24
 
25
  - **Repository:** [More Information Needed]
26
  - **Paper [optional]:** [More Information Needed]
27
+ - **Demo [optional]:** [More Information Needed] -->
28
 
29
  ## Uses
30
 
 
66
  tokenizer.batch_decode(model_output)
67
  ```
68
 
69
+ <!-- ## Bias, Risks, and Limitations
70
 
71
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
72
 
73
+ <!-- [More Information Needed]
74
 
75
+ <!-- ### Recommendations
76
 
77
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations.
78
 
79
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
80
+ -->
81
 
82
+ <!-- ## Training Details -->
83
 
84
  ### Training Data
85
 
 
103
  ```
104
 
105
  ### Prompting
106
+ The model can be evaluated by using the following prompt:
107
  ``` python
108
  """Please generate a math problem and 2 to 4 options for 8th graders with the following requirements:
109
  Problem context: <specified-context>
110
  Tested knowledge: <specified-knowledge>"""
111
  ```
112
+ The contexts used in the dataset are:
113
  ```
114
  "Video Games",
115
  "Fashion",
 
121
  "Social Media",
122
  "Environmental issues"
123
  ```
124
+ The tested knowledge in the dataset are:
125
  ```
126
  "Operations with Rational Numbers",
127
  "Expressions and Equations",
 
154
  "Representing Proportional Relationships"
155
  ```
156
 
157
+ ### Sample Generation
158
 
159
  Here is an example passage from the training data:
160
  ```
 
182
  Option 4: \(a = 2\) and \(b = 8\)
183
  Is correct: False
184
  ```