--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-WikiNeural results: [] datasets: - Babelscape/wikineural language: - en metrics: - accuracy - f1 - recall - precision - seqeval pipeline_tag: token-classification --- # bert-base-cased-finetuned-WikiNeural This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased). It achieves the following results on the evaluation set: - Loss: 0.0881 - Loc - Precision: 0.9282034236330398 - Recall: 0.9378673383711167 - F1: 0.9330103575008353 - Number: 5955 - Misc - Precision: 0.8336608897623727 - Rrecall: 0.9219521833629718 - F1: 0.8755864139613436 - Number: 5061 - Org - Precision: 0.9351851851851852 - Recall: 0.9370832125253696 - F1: 0.9361332367849385 - Number: 3449 - Per - Precision: 0.9728037566034045 - Recall: 0.9543186180422265 - F1: 0.9634725317314214 - Number: 5210 - Overall - Precision: 0.9145 - Recall: 0.9380 - F1: 0.9261 - Accuracy: 0.9912 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20BERT-Base%20Transformer.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:------------:|:-----------:|:------------:|:--------:|:----------:|:--------:|:----------:|:---:| | 0.1 | 1.0 | 5795 | 0.0943 | 0.9075 | 0.9429 | 0.9249 | 5955 | 0.8320 | 0.8965 | 0.8630 | 5061 | 0.9151 | 0.9287 | 0.9219 | 3449 | 0.9683 | 0.9499 | 0.9590 | 5210 | 0.9039 | 0.9303 | 0.9169 | 0.9901 | | 0.0578 | 2.0 | 11590 | 0.0881 | 0.9282 | 0.9379 | 0.9330 | 5955 | 0.8337 | 0.9220 | 0.8756 | 5061 | 0.9352 | 0.9371 | 0.9361 | 3449 | 0.9728 | 0.9543 | 0.9635 | 5210 | 0.9145 | 0.9380 | 0.9261 | 0.9912 | * All values in the chart above are rounded to the nearest ten-thousandth. ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3