DunnBC22 commited on
Commit
7e91221
1 Parent(s): 1233a70

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -17
README.md CHANGED
@@ -2,38 +2,52 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
5
  datasets:
6
  - ncbi_disease
7
  model-index:
8
  - name: bert-base-cased-finetuned-ner-NCBI_Disease
9
  results: []
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
  # bert-base-cased-finetuned-ner-NCBI_Disease
16
 
17
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ncbi_disease dataset.
 
18
  It achieves the following results on the evaluation set:
19
  - Loss: 0.0614
20
- - Disease: {'precision': 0.8063891577928364, 'recall': 0.8677083333333333, 'f1': 0.8359257400903161, 'number': 960}
21
- - Overall Precision: 0.8064
22
- - Overall Recall: 0.8677
23
- - Overall F1: 0.8359
24
- - Overall Accuracy: 0.9825
 
 
 
 
 
25
 
26
  ## Model description
27
 
28
- More information needed
29
 
30
  ## Intended uses & limitations
31
 
32
- More information needed
33
 
34
  ## Training and evaluation data
35
 
36
- More information needed
37
 
38
  ## Training procedure
39
 
@@ -50,16 +64,17 @@ The following hyperparameters were used during training:
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Disease | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
- | 0.0525 | 1.0 | 340 | 0.0617 | {'precision': 0.7813471502590673, 'recall': 0.7854166666666667, 'f1': 0.7833766233766233, 'number': 960} | 0.7813 | 0.7854 | 0.7834 | 0.9796 |
56
- | 0.022 | 2.0 | 680 | 0.0551 | {'precision': 0.7897240723120837, 'recall': 0.8645833333333334, 'f1': 0.8254599701640976, 'number': 960} | 0.7897 | 0.8646 | 0.8255 | 0.9819 |
57
- | 0.0154 | 3.0 | 1020 | 0.0614 | {'precision': 0.8063891577928364, 'recall': 0.8677083333333333, 'f1': 0.8359257400903161, 'number': 960} | 0.8064 | 0.8677 | 0.8359 | 0.9825 |
58
 
 
59
 
60
  ### Framework versions
61
 
62
  - Transformers 4.28.1
63
  - Pytorch 2.0.0
64
  - Datasets 2.11.0
65
- - Tokenizers 0.13.3
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
+ - medical
6
+ - science
7
  datasets:
8
  - ncbi_disease
9
  model-index:
10
  - name: bert-base-cased-finetuned-ner-NCBI_Disease
11
  results: []
12
+ language:
13
+ - en
14
+ metrics:
15
+ - seqeval
16
+ - f1
17
+ - recall
18
+ - accuracy
19
+ - precision
20
+ pipeline_tag: token-classification
21
  ---
22
 
 
 
 
23
  # bert-base-cased-finetuned-ner-NCBI_Disease
24
 
25
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the ncbi_disease dataset.
26
+
27
  It achieves the following results on the evaluation set:
28
  - Loss: 0.0614
29
+ - Disease:
30
+ - Precision: 0.8063891577928364
31
+ - Recall: 0.8677083333333333
32
+ - F1: 0.8359257400903161
33
+ - Number: 960
34
+ - Overall
35
+ - Precision: 0.8064
36
+ - Recall: 0.8677
37
+ - F1: 0.8359
38
+ - Accuracy: 0.9825
39
 
40
  ## Model description
41
 
42
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/NCBI_Disease/NER%20Project%20Using%20NCBI_Disease%20Dataset.ipynb
43
 
44
  ## Intended uses & limitations
45
 
46
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
47
 
48
  ## Training and evaluation data
49
 
50
+ Data Source: https://huggingface.co/datasets/ncbi_disease
51
 
52
  ## Training procedure
53
 
 
64
 
65
  ### Training results
66
 
67
+ | Training Loss | Epoch | Step | Validation Loss | Disease Precision | Disease Recall | Disease F1 | Disease Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
68
+ |:-----------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|:-----------------:|:--------------:|:----------:|:-------:|
69
+ | 0.0525 | 1.0 | 340 | 0.0617 | 0.7813 | 0.7854 | 0.7834 | 960 | 0.7813 | 0.7854 | 0.7834 | 0.9796 |
70
+ | 0.022 | 2.0 | 680 | 0.0551 | 0.7897 | 0.8646 | 0.8255 | 960 | 0.7897 | 0.8646 | 0.8255 | 0.9819 |
71
+ | 0.0154 | 3.0 | 1020 | 0.0614 | 0.8064 | 0.8677 | 0.8359 | 960 | 0.8064 | 0.8677 | 0.8359 | 0.9825 |
72
 
73
+ * All values in the above chart are rounded to the nearest ten-thousandth.
74
 
75
  ### Framework versions
76
 
77
  - Transformers 4.28.1
78
  - Pytorch 2.0.0
79
  - Datasets 2.11.0
80
+ - Tokenizers 0.13.3