File size: 1,792 Bytes
3684006
 
 
 
 
 
 
 
 
0311727
 
 
3684006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0311727
 
 
3684006
 
 
0311727
3684006
 
 
0311727
3684006
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0311727
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-base-text_summarization_data
  results: []
language:
- en
pipeline_tag: summarization
---

# flan-t5-base-text_summarization_data

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7386
- Rouge1: 43.6615
- Rouge2: 20.349
- Rougel: 40.1032
- Rougelsum: 40.1589
- Gen Len: 14.6434

## Model description

This is a text summarization model.

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Text%20Summarization/Text-Summarized%20Data%20-%20Comparison/Flan-T5%20-%20Text%20Summarization%20-%201%20Epoch.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/cuitengfeui/textsummarization-data

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 2.0287        | 1.0   | 1197 | 1.7386          | 43.6615 | 20.349 | 40.1032 | 40.1589   | 14.6434 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.12.1