--- tags: - generated_from_trainer model-index: - name: ibert-roberta-base-finetuned-WikiNeural results: [] datasets: - Babelscape/wikineural language: - en metrics: - accuracy - f1 - recall - precision - seqeval pipeline_tag: token-classification --- # ibert-roberta-base-finetuned-WikiNeural This model is a fine-tuned version of [kssteven/ibert-roberta-base](https://huggingface.co/kssteven/ibert-roberta-base). It achieves the following results on the evaluation set: - Loss: 0.0878 - Loc - Precision: 0.9249338624338624 - Recall: 0.9393786733837112 - F1: 0.9321003082562693 - Number: 5955 - Misc - Precision: 0.8304751697034656 - Recall: 0.9185931634064414 - F1: 0.8723144760296463 - Number: 5061 - Org - Precision: 0.9283453237410072 - Recall: 0.9353435778486517 - F1: 0.9318313113807049 - Number: 3449 - Per - Precision: 0.9698098412076064 - Recall: 0.9495201535508637 - F1: 0.9595577538551062 - Number: 5210 - Overall - Precision: 0.9107 - Recall: 0.9360 - F1: 0.9232 - Accuracy: 0.9909 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20I-BERT%20Transformer.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:--------:|:---------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------:|:----------------:| | 0.1092 | 1.0 | 5795 | 0.0987 | 0.9125 | 0.9328 | 0.9225 | 5955 | 0.8003 | 0.9091 | 0.8512 | 5061 | 0.9143 | 0.9278 | 0.9210 | 3449 | 0.9714 | 0.9395 | 0.9552 | 5210 | 0.8957 | 0.9276 | 0.9114 | 0.9890 | | 0.0723 | 2.0 | 11590 | 0.0878 | 0.9249 | 0.9394 | 0.9321 | 5955 | 0.8305 | 0.9186 | 0.8723 | 5061 | 0.9283 | 0.9353 | 0.9318 | 3449 | 0.9698 | 0.9495 | 0.9596 | 5210 | 0.9107 | 0.9360 | 0.9232 | 0.9909 | * All values in the above chart arerounded to nearest ten-thousandth. ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1 - Datasets 2.13.0 - Tokenizers 0.13.3