|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
- biology |
|
- medical |
|
metrics: |
|
- bleu |
|
- rouge |
|
- meteor |
|
model-index: |
|
- name: mbart-large-50-Biomedical_Dataset |
|
results: [] |
|
language: |
|
- en |
|
- it |
|
pipeline_tag: translation |
|
--- |
|
|
|
# mbart-large-50-Biomedical_Dataset |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Training Loss: 1.0165 |
|
- Epoch: 1.0 |
|
- Step: 2636 |
|
- Validation Loss: 0.9425 |
|
- Bleu: 38.9893 |
|
- Rouge Metrics: |
|
- Rouge1: 0.6826259612196924 |
|
- Rouge2: 0.473675987811788 |
|
- RougeL: 0.6586445010303293 |
|
- RougeLsum: 0.6585487473231793 |
|
- Meteor: 0.6299677745833094 |
|
- Prediction lengths: 24.362727392855568 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Biomedical%20-%20Translation%20Project.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://huggingface.co/datasets/paolo-ruggirello/biomedical-dataset |
|
|
|
### Histogram of English Input Word Counts |
|
|
|
![English Input Lengths](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Images/Histogram%20of%20English%20Lengths.png) |
|
|
|
### Histogram of Italian Input Word Counts |
|
|
|
![Italian Input Lengths](https://raw.githubusercontent.com/DunnBC22/NLP_Projects/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Images/Histogram%20of%20Italian%20Inputs.png) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results* |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | RougeL | RougeLsum | Meteor | Prediction Lengths | |
|
| :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | |
|
| 1.0165 | 1.0 | 2636 | 0.9425 | 38.9893 | 0.6826 | 0.4737 | 0.6586 | 0.6585 | 0.6270 | 24.3627 | |
|
|
|
Footnotes: |
|
|
|
*: All results in this table are rounded to the nearest ten-thousandths of the decimal. |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |