--- license: mit tags: - generated_from_trainer - biology - medical metrics: - bleu - rouge - meteor model-index: - name: mbart-large-50-Biomedical_Dataset results: [] language: - en - it pipeline_tag: translation --- # mbart-large-50-Biomedical_Dataset This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50). It achieves the following results on the evaluation set: - Training Loss: 1.0165 - Epoch: 1.0 - Step: 2636 - Validation Loss: 0.9425 - Bleu: 38.9893 - Rouge Metrics: - Rouge1: 0.6826259612196924 - Rouge2: 0.473675987811788 - RougeL: 0.6586445010303293 - RougeLsum: 0.6585487473231793 - Meteor: 0.6299677745833094 - Prediction lengths: 24.362727392855568 ## Model description For more information on how it was created, check out the following link: {I will update this once I post the code on github.} ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/paolo-ruggirello/biomedical-dataset ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results [^1] | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | RougeL | RougeLsum | Meteor | Prediction Lengths | | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | :-------------: | | 1.0165 | 1.0 | 2636 | 0.9425 | 38.9893 | 0.6826 | 0.4737 | 0.6586 | 0.6585 | 0.6270 | 24.3627 |
Footnotes: [^1]: All results in this table are rounded to the nearest ten-thousandths of the decimal. ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3