update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: mega-base-wikitext-News_About_Gold
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# mega-base-wikitext-News_About_Gold
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.0031
|
20 |
+
- Accuracy: 0.5014
|
21 |
+
- Weighted f1: 0.4023
|
22 |
+
- Micro f1: 0.5014
|
23 |
+
- Macro f1: 0.3282
|
24 |
+
- Weighted recall: 0.5014
|
25 |
+
- Micro recall: 0.5014
|
26 |
+
- Macro recall: 0.3835
|
27 |
+
- Weighted precision: 0.5783
|
28 |
+
- Micro precision: 0.5014
|
29 |
+
- Macro precision: 0.4548
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 2e-05
|
49 |
+
- train_batch_size: 64
|
50 |
+
- eval_batch_size: 64
|
51 |
+
- seed: 42
|
52 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
53 |
+
- lr_scheduler_type: linear
|
54 |
+
- num_epochs: 5
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
|
60 |
+
| 1.2255 | 1.0 | 133 | 1.1365 | 0.4134 | 0.2437 | 0.4134 | 0.1487 | 0.4134 | 0.4134 | 0.2507 | 0.2652 | 0.4134 | 0.2285 |
|
61 |
+
| 1.1337 | 2.0 | 266 | 1.0851 | 0.4532 | 0.3257 | 0.4532 | 0.2539 | 0.4532 | 0.4532 | 0.3161 | 0.3015 | 0.4532 | 0.2705 |
|
62 |
+
| 1.0847 | 3.0 | 399 | 1.0384 | 0.4759 | 0.3591 | 0.4759 | 0.2915 | 0.4759 | 0.4759 | 0.3520 | 0.6352 | 0.4759 | 0.4942 |
|
63 |
+
| 1.05 | 4.0 | 532 | 1.0112 | 0.4962 | 0.3917 | 0.4962 | 0.3206 | 0.4962 | 0.4962 | 0.3783 | 0.5846 | 0.4962 | 0.4596 |
|
64 |
+
| 1.0309 | 5.0 | 665 | 1.0031 | 0.5014 | 0.4023 | 0.5014 | 0.3282 | 0.5014 | 0.5014 | 0.3835 | 0.5783 | 0.5014 | 0.4548 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.28.1
|
70 |
+
- Pytorch 2.0.0
|
71 |
+
- Datasets 2.11.0
|
72 |
+
- Tokenizers 0.13.3
|