DunnBC22 commited on
Commit
7d73d6c
·
1 Parent(s): f58f6d8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: mega-base-wikitext-News_About_Gold
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # mega-base-wikitext-News_About_Gold
16
+
17
+ This model is a fine-tuned version of [mnaylor/mega-base-wikitext](https://huggingface.co/mnaylor/mega-base-wikitext) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.0031
20
+ - Accuracy: 0.5014
21
+ - Weighted f1: 0.4023
22
+ - Micro f1: 0.5014
23
+ - Macro f1: 0.3282
24
+ - Weighted recall: 0.5014
25
+ - Micro recall: 0.5014
26
+ - Macro recall: 0.3835
27
+ - Weighted precision: 0.5783
28
+ - Micro precision: 0.5014
29
+ - Macro precision: 0.4548
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 64
50
+ - eval_batch_size: 64
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - num_epochs: 5
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
60
+ | 1.2255 | 1.0 | 133 | 1.1365 | 0.4134 | 0.2437 | 0.4134 | 0.1487 | 0.4134 | 0.4134 | 0.2507 | 0.2652 | 0.4134 | 0.2285 |
61
+ | 1.1337 | 2.0 | 266 | 1.0851 | 0.4532 | 0.3257 | 0.4532 | 0.2539 | 0.4532 | 0.4532 | 0.3161 | 0.3015 | 0.4532 | 0.2705 |
62
+ | 1.0847 | 3.0 | 399 | 1.0384 | 0.4759 | 0.3591 | 0.4759 | 0.2915 | 0.4759 | 0.4759 | 0.3520 | 0.6352 | 0.4759 | 0.4942 |
63
+ | 1.05 | 4.0 | 532 | 1.0112 | 0.4962 | 0.3917 | 0.4962 | 0.3206 | 0.4962 | 0.4962 | 0.3783 | 0.5846 | 0.4962 | 0.4596 |
64
+ | 1.0309 | 5.0 | 665 | 1.0031 | 0.5014 | 0.4023 | 0.5014 | 0.3282 | 0.5014 | 0.5014 | 0.3835 | 0.5783 | 0.5014 | 0.4548 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.28.1
70
+ - Pytorch 2.0.0
71
+ - Datasets 2.11.0
72
+ - Tokenizers 0.13.3