File size: 1,712 Bytes
d6db132 ccdabbf e03b50d ccdabbf e03b50d d6db132 ccdabbf d6db132 ccdabbf d6db132 ccdabbf d6db132 2e608d8 d6db132 2e608d8 d6db132 2e608d8 d6db132 2e608d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
language:
- en
tags:
- generated_from_trainer
metrics:
- rouge
pipeline_tag: summarization
base_model: google/pegasus-multi_news
model-index:
- name: pegasus-multi_news-NewsSummarization_BBC
results: []
---
# pegasus-multi_news-NewsSummarization_BBC
This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news).
## Model description
This is a text summarization model of news articles.
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Text%20Summarization/Text_Summarization_BBC_News-Pegasus.ipynb
## Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
## Training and evaluation data
Dataset Source: https://www.kaggle.com/datasets/pariza/bbc-news-summary
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
### Training results
Unfortunately, I did not set the metrics to automatically upload here. They are as follows:
| Training Loss | Epoch | Step | rouge1 | rouge2 | rougeL | rougeLsum |
|:-------------:|:-----:|:----:|:--------:|:--------:|:--------:|:----------:|
| 6.41979 | 2.0 | 214 | 0.584474 | 0.463574 | 0.408729 | 0.408431 |
### Framework versions
- Transformers 4.21.3
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1 |