--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-WikiNeural results: [] datasets: - Babelscape/wikineural language: - en metrics: - accuracy - f1 - precision - recall - seqeval pipeline_tag: token-classification --- # roberta-base-finetuned-WikiNeural This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base). It achieves the following results on the evaluation set: - Loss: 0.0871 - Loc - Precision: 0.9276567437219359 - Recall: 0.9366918555835433 - F1: 0.9321524064171123 - Number: 5955 - Misc - Precision: 0.8334231805929919 - Recall: 0.916419679905157 - F1: 0.872953133822699 - Number: 5061 - Org - Precision: 0.9296179258833669 - Recall: 0.9382429689765149 - F1: 0.9339105339105339 - Number: 3449 - Per - Precision: 0.9688723570869224 - Recall: 0.9499040307101727 - F1: 0.9592944369063772 - Number: 5210 - Overall - Precision: 0.9124 - Recall: 0.9352 - F1: 0.9237 - Accuracy: 0.9910 ## Model description For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20Roberta-Base%20Transformer.ipynb ## Intended uses & limitations This model is intended to demonstrate my ability to solve a complex problem using technology. ## Training and evaluation data Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:----------:|:-----------:|:------------:|:------------:|:------------:|:-----------------:|:--------------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:| | 0.1086 | 1.0 | 5795 | 0.1001 | 0.9149 | 0.9333 | 0.9240 | 5955 | 0.8158 | 0.9030 | 0.8572 | 5061 | 0.9134 | 0.9295 | 0.9214 | 3449 | 0.9642 | 0.9461 | 0.9550 | 5210 | 0.8997 | 0.9282 | 0.9137 | 0.9896 | | 0.0727 | 2.0 | 11590 | 0.0871 | 0.9277 | 0.9367 | 0.9325 | 5955 | 0.8334 | 0.9164 | 0.8730 | 5061 | 0.9296 | 0.9382 | 0.9339 | 3449 | 0.9689 | 0.9499 | 0.9593 | 5210 | 0.9124 | 0.9352 | 0.9237 | 0.9910 | * All values in the cahrt above are rounded to the nearest ten-thousandths. ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1 - Datasets 2.13.0 - Tokenizers 0.13.3