--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-WikiNeural results: [] --- # roberta-base-finetuned-WikiNeural This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0871 - Loc: {'precision': 0.9276567437219359, 'recall': 0.9366918555835433, 'f1': 0.9321524064171123, 'number': 5955} - Misc: {'precision': 0.8334231805929919, 'recall': 0.916419679905157, 'f1': 0.872953133822699, 'number': 5061} - Org: {'precision': 0.9296179258833669, 'recall': 0.9382429689765149, 'f1': 0.9339105339105339, 'number': 3449} - Per: {'precision': 0.9688723570869224, 'recall': 0.9499040307101727, 'f1': 0.9592944369063772, 'number': 5210} - Overall Precision: 0.9124 - Overall Recall: 0.9352 - Overall F1: 0.9237 - Overall Accuracy: 0.9910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.1086 | 1.0 | 5795 | 0.1001 | {'precision': 0.9148971193415638, 'recall': 0.9333333333333333, 'f1': 0.9240232751454697, 'number': 5955} | {'precision': 0.8157800785433774, 'recall': 0.9029836000790358, 'f1': 0.8571696520678983, 'number': 5061} | {'precision': 0.9133903133903134, 'recall': 0.9295447955929255, 'f1': 0.9213967524069551, 'number': 3449} | {'precision': 0.9642018779342723, 'recall': 0.9460652591170825, 'f1': 0.9550474714202672, 'number': 5210} | 0.8997 | 0.9282 | 0.9137 | 0.9896 | | 0.0727 | 2.0 | 11590 | 0.0871 | {'precision': 0.9276567437219359, 'recall': 0.9366918555835433, 'f1': 0.9321524064171123, 'number': 5955} | {'precision': 0.8334231805929919, 'recall': 0.916419679905157, 'f1': 0.872953133822699, 'number': 5061} | {'precision': 0.9296179258833669, 'recall': 0.9382429689765149, 'f1': 0.9339105339105339, 'number': 3449} | {'precision': 0.9688723570869224, 'recall': 0.9499040307101727, 'f1': 0.9592944369063772, 'number': 5210} | 0.9124 | 0.9352 | 0.9237 | 0.9910 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1 - Datasets 2.13.0 - Tokenizers 0.13.3