DunnBC22's picture
Update README.md
d28ab38
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
language:
  - en
metrics:
  - accuracy
  - f1
  - recall
  - precision

DunnBC22/sentence-t5-base-FT-Quora_Sentence_Similarity-LG

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Semantic_Similarity/Semantic%20Similarity-base.ipynb

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('DunnBC22/sentence-t5-base-FT-Quora_Sentence_Similarity-LG')
embeddings = model.encode(sentences)
print(embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Metric Measure Value Notes
Accuracy Cosine-Similarity 85.93 Threshold: 0.8320
F1 Cosine-Similarity 82.89 Threshold: 0.8178
Precision Cosine-Similarity 77.43 -
Recall Cosine-Similarity 89.18 -
Average Precision Cosine-Similarity 87.13 -
Accuracy Manhattan-Distance 85.95 Threshold: 12.7721
F1 Manhattan-Distance 82.89 Threshold: 13.5008
Precision Manhattan-Distance 76.91 -
Recall Manhattan-Distance 89.89 -
Average Precision Manhattan-Distance 87.13 -
Accuracy Euclidean-Distance 85.93 Threshold: 0.5797
F1 Euclidean-Distance 82.89 Threshold: 0.6037
Precision Euclidean-Distance 77.43 -
Recall Euclidean-Distance 89.18 -
Average Precision Euclidean-Distance 87.13 -
Accuracy Dot-Product 85.93 Threshold: 0.8320
F1 Dot-Product 82.89 Threshold: 0.8178
Precision Dot-Product 77.43 -
Recall Dot-Product 89.18 -
Average Precision Dot-Product 87.14 -

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 4673 with parameters:

{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 0,
    "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 2,
    "weight_decay": 0.01
}

Potential Improvements

One way to improve the results of this model is to use a larger checkpoint of T5. This was trained with the T5-base checkpoint.

The larger checkpoints are:

Checkpoint # of Train Params
T5-Base 220 Million*
T5-Large 770 Million
T5-3B 3 Billion
T5-11B 11 Billion

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 34, 'do_lower_case': False}) with Transformer model: T5EncoderModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
  (3): Normalize()
)

Citing & Authors

Dataset Source: https://www.kaggle.com/datasets/quora/question-pairs-dataset