DunnBC22 commited on
Commit
5a6e705
1 Parent(s): cbc99b3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -6
README.md CHANGED
@@ -7,11 +7,11 @@ tags:
7
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
15
 
16
  ## Usage (Sentence-Transformers)
17
 
@@ -32,11 +32,31 @@ embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
34
 
35
-
36
-
37
  ## Evaluation Results
38
 
39
- <!--- Describe how your model was evaluated -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
 
@@ -73,6 +93,19 @@ Parameters of the fit()-Method:
73
  }
74
  ```
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
  ## Full Model Architecture
78
  ```
@@ -86,4 +119,4 @@ SentenceTransformer(
86
 
87
  ## Citing & Authors
88
 
89
- <!--- Describe where people can find more information -->
 
7
 
8
  ---
9
 
10
+ # Quora Sentence Similarity
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Semantic_Similarity/Semantic%20Similarity-large.ipynb
15
 
16
  ## Usage (Sentence-Transformers)
17
 
 
32
  print(embeddings)
33
  ```
34
 
 
 
35
  ## Evaluation Results
36
 
37
+ | Metric | Measure | Value | Notes |
38
+ | :--------: | :--------: | :--------: | :--------: |
39
+ | Accuracy | **Cosine-Similarity** | 88.72 | Threshold: 0.8397 |
40
+ | F1 | Cosine-Similarity | 85.22 | Threshold: 0.8223 |
41
+ | Precision | Cosine-Similarity | 80.72 | - |
42
+ | Recall | Cosine-Similarity | 90.25 | - |
43
+ | Average Precision | Cosine-Similarity | 89.75 | - |
44
+ | Accuracy | **Manhattan-Distance** | 88.71 | Threshold: 12.4351 |
45
+ | F1 | Manhattan-Distance | 85.22 | Threshold: 13.2209 |
46
+ | Precision | Manhattan-Distance | 80.58 | - |
47
+ | Recall | Manhattan-Distance | 90.42 | - |
48
+ | Average Precision | Manhattan-Distance | 89.74 | - |
49
+ | Accuracy | **Euclidean-Distance** | 88.72 | Threshold: 0.5662 |
50
+ | F1 | Euclidean-Distance | 85.22 | Threshold: 0.5962 |
51
+ | Precision | Euclidean-Distance | 80.72 | - |
52
+ | Recall | Euclidean-Distance | 90.25 | - |
53
+ | Average Precision | Euclidean-Distance | 89.75 | - |
54
+ | Accuracy | **Dot-Product** | 88.72 | Threshold: 0.8397 |
55
+ | F1 | Dot-Product | 85.22 | Threshold: 0.8223 |
56
+ | Precision | Dot-Product | 80.72 | - |
57
+ | Recall | Dot-Product | 90.25 | - |
58
+ | Average Precision | Dot-Product | 89.75 | - |
59
+
60
 
61
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
62
 
 
93
  }
94
  ```
95
 
96
+ **Potential Improvements**
97
+
98
+ One way to improve the results of this model is to use a larger checkpoint of T5. This was trained with the T5-large checkpoint.
99
+
100
+ The larger checkpoints are:
101
+
102
+ | Checkpoint | # of Train Params |
103
+ | :--------: | :--------: |
104
+ | T5-Base | 220 Million |
105
+ | T5-Large | 770 Million* |
106
+ | T5-3B | 3 Billion |
107
+ | T5-11B | 11 Billion |
108
+
109
 
110
  ## Full Model Architecture
111
  ```
 
119
 
120
  ## Citing & Authors
121
 
122
+ Dataset Source: https://www.kaggle.com/datasets/quora/question-pairs-dataset