Update README.md
Browse files
README.md
CHANGED
@@ -7,11 +7,11 @@ tags:
|
|
7 |
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
-
|
15 |
|
16 |
## Usage (Sentence-Transformers)
|
17 |
|
@@ -32,11 +32,31 @@ embeddings = model.encode(sentences)
|
|
32 |
print(embeddings)
|
33 |
```
|
34 |
|
35 |
-
|
36 |
-
|
37 |
## Evaluation Results
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
42 |
|
@@ -73,6 +93,19 @@ Parameters of the fit()-Method:
|
|
73 |
}
|
74 |
```
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
## Full Model Architecture
|
78 |
```
|
@@ -86,4 +119,4 @@ SentenceTransformer(
|
|
86 |
|
87 |
## Citing & Authors
|
88 |
|
89 |
-
|
|
|
7 |
|
8 |
---
|
9 |
|
10 |
+
# Quora Sentence Similarity
|
11 |
|
12 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
|
14 |
+
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Semantic_Similarity/Semantic%20Similarity-large.ipynb
|
15 |
|
16 |
## Usage (Sentence-Transformers)
|
17 |
|
|
|
32 |
print(embeddings)
|
33 |
```
|
34 |
|
|
|
|
|
35 |
## Evaluation Results
|
36 |
|
37 |
+
| Metric | Measure | Value | Notes |
|
38 |
+
| :--------: | :--------: | :--------: | :--------: |
|
39 |
+
| Accuracy | **Cosine-Similarity** | 88.72 | Threshold: 0.8397 |
|
40 |
+
| F1 | Cosine-Similarity | 85.22 | Threshold: 0.8223 |
|
41 |
+
| Precision | Cosine-Similarity | 80.72 | - |
|
42 |
+
| Recall | Cosine-Similarity | 90.25 | - |
|
43 |
+
| Average Precision | Cosine-Similarity | 89.75 | - |
|
44 |
+
| Accuracy | **Manhattan-Distance** | 88.71 | Threshold: 12.4351 |
|
45 |
+
| F1 | Manhattan-Distance | 85.22 | Threshold: 13.2209 |
|
46 |
+
| Precision | Manhattan-Distance | 80.58 | - |
|
47 |
+
| Recall | Manhattan-Distance | 90.42 | - |
|
48 |
+
| Average Precision | Manhattan-Distance | 89.74 | - |
|
49 |
+
| Accuracy | **Euclidean-Distance** | 88.72 | Threshold: 0.5662 |
|
50 |
+
| F1 | Euclidean-Distance | 85.22 | Threshold: 0.5962 |
|
51 |
+
| Precision | Euclidean-Distance | 80.72 | - |
|
52 |
+
| Recall | Euclidean-Distance | 90.25 | - |
|
53 |
+
| Average Precision | Euclidean-Distance | 89.75 | - |
|
54 |
+
| Accuracy | **Dot-Product** | 88.72 | Threshold: 0.8397 |
|
55 |
+
| F1 | Dot-Product | 85.22 | Threshold: 0.8223 |
|
56 |
+
| Precision | Dot-Product | 80.72 | - |
|
57 |
+
| Recall | Dot-Product | 90.25 | - |
|
58 |
+
| Average Precision | Dot-Product | 89.75 | - |
|
59 |
+
|
60 |
|
61 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
62 |
|
|
|
93 |
}
|
94 |
```
|
95 |
|
96 |
+
**Potential Improvements**
|
97 |
+
|
98 |
+
One way to improve the results of this model is to use a larger checkpoint of T5. This was trained with the T5-large checkpoint.
|
99 |
+
|
100 |
+
The larger checkpoints are:
|
101 |
+
|
102 |
+
| Checkpoint | # of Train Params |
|
103 |
+
| :--------: | :--------: |
|
104 |
+
| T5-Base | 220 Million |
|
105 |
+
| T5-Large | 770 Million* |
|
106 |
+
| T5-3B | 3 Billion |
|
107 |
+
| T5-11B | 11 Billion |
|
108 |
+
|
109 |
|
110 |
## Full Model Architecture
|
111 |
```
|
|
|
119 |
|
120 |
## Citing & Authors
|
121 |
|
122 |
+
Dataset Source: https://www.kaggle.com/datasets/quora/question-pairs-dataset
|