DunnBC22 commited on
Commit
5629fde
·
1 Parent(s): 07f158d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -8
README.md CHANGED
@@ -6,6 +6,9 @@ datasets:
6
  - imagefolder
7
  metrics:
8
  - accuracy
 
 
 
9
  model-index:
10
  - name: vit-base-patch16-224-in21k_Human_Activity_Recognition
11
  results:
@@ -22,14 +25,13 @@ model-index:
22
  - name: Accuracy
23
  type: accuracy
24
  value: 0.8380952380952381
 
 
25
  ---
26
 
27
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
- should probably proofread and complete it, then remove this comment. -->
29
-
30
  # vit-base-patch16-224-in21k_Human_Activity_Recognition
31
 
32
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
  - Loss: 0.7403
35
  - Accuracy: 0.8381
@@ -45,15 +47,17 @@ It achieves the following results on the evaluation set:
45
 
46
  ## Model description
47
 
48
- More information needed
 
 
49
 
50
  ## Intended uses & limitations
51
 
52
- More information needed
53
 
54
  ## Training and evaluation data
55
 
56
- More information needed
57
 
58
  ## Training procedure
59
 
@@ -84,4 +88,4 @@ The following hyperparameters were used during training:
84
  - Transformers 4.25.1
85
  - Pytorch 1.12.1
86
  - Datasets 2.8.0
87
- - Tokenizers 0.12.1
 
6
  - imagefolder
7
  metrics:
8
  - accuracy
9
+ - f1
10
+ - recall
11
+ - precision
12
  model-index:
13
  - name: vit-base-patch16-224-in21k_Human_Activity_Recognition
14
  results:
 
25
  - name: Accuracy
26
  type: accuracy
27
  value: 0.8380952380952381
28
+ language:
29
+ - en
30
  ---
31
 
 
 
 
32
  # vit-base-patch16-224-in21k_Human_Activity_Recognition
33
 
34
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k).
35
  It achieves the following results on the evaluation set:
36
  - Loss: 0.7403
37
  - Accuracy: 0.8381
 
47
 
48
  ## Model description
49
 
50
+ This is a multiclass image classification model of humans doing different activities.
51
+
52
+ For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Multiclass%20Classification/Human%20Activity%20Recognition/ViT-Human%20Action_Recogniton.ipynb
53
 
54
  ## Intended uses & limitations
55
 
56
+ This model is intended to demonstrate my ability to solve a complex problem using technology.
57
 
58
  ## Training and evaluation data
59
 
60
+ Dataset Source: https://www.kaggle.com/datasets/meetnagadia/human-action-recognition-har-dataset
61
 
62
  ## Training procedure
63
 
 
88
  - Transformers 4.25.1
89
  - Pytorch 1.12.1
90
  - Datasets 2.8.0
91
+ - Tokenizers 0.12.1