DunnBC22 commited on
Commit
5589502
·
1 Parent(s): 3e91db5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - recall
11
+ - precision
12
+ model-index:
13
+ - name: vit-base-patch16-224-in21k_covid_19_ct_scans
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.94
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9379310344827586
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.8947368421052632
34
+ - name: Precision
35
+ type: precision
36
+ value: 0.9855072463768116
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # vit-base-patch16-224-in21k_covid_19_ct_scans
43
+
44
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.1727
47
+ - Accuracy: 0.94
48
+ - F1: 0.9379
49
+ - Recall: 0.8947
50
+ - Precision: 0.9855
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 0.0002
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 3
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
80
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
81
+ | 0.6742 | 1.0 | 38 | 0.4309 | 0.9 | 0.8993 | 0.8816 | 0.9178 |
82
+ | 0.6742 | 2.0 | 76 | 0.3739 | 0.8467 | 0.8686 | 1.0 | 0.7677 |
83
+ | 0.6742 | 3.0 | 114 | 0.1727 | 0.94 | 0.9379 | 0.8947 | 0.9855 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.22.2
89
+ - Pytorch 1.12.1
90
+ - Datasets 2.5.2
91
+ - Tokenizers 0.12.1