--- base_model: uitnlp/visobert tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: d-filter-v1.2 results: [] --- # d-filter-v1.2 This model is a fine-tuned version of [uitnlp/visobert](https://huggingface.co/uitnlp/visobert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0881 - Accuracy: 0.9668 - F1: 0.8703 - Precision: 0.9044 - Recall: 0.8388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1015 | 1.0 | 1414 | 0.0881 | 0.9668 | 0.8703 | 0.9044 | 0.8388 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.17.0 - Tokenizers 0.19.1