File size: 30,882 Bytes
c6b1960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
import argparse
import gc
import json
import logging
import math
import os
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
from random import randint
from typing import Any, Dict, List, Union
# datasets imports
import datasets
# metric imports
import evaluate
import numpy as np
import torch
import transformers
import wandb
# accelerate imports
from accelerate import Accelerator, dispatch_model
from accelerate.logging import get_logger
from datasets import Audio, DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
# hf imports
from huggingface_hub import Repository
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
SchedulerType,
WhisperForConditionalGeneration,
WhisperProcessor,
get_scheduler,
set_seed,
)
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from transformers.utils import get_full_repo_name
# peft imports
from peft import AdaLoraConfig, LoraConfig, PeftModel, get_peft_model
logger = get_logger(__name__, log_level="INFO")
def parse_args():
parser = argparse.ArgumentParser(description="Whisper Fine-Tuning with AdaLora")
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument("--language", type=str, help="Language to use for training; e.g., 'Hindi' ", required=True)
parser.add_argument("--language_abbr", type=str, help="Language to use for training; e.g., 'hi' ", required=True)
parser.add_argument(
"--task", type=str, default="transcribe", help="Task to use for training; e.g., 'transcribe' ", required=False
)
parser.add_argument(
"--dataset_name",
type=str,
default="mozilla-foundation/common_voice_11_0",
help="Dataset to use for training; e.g., 'whisper' ",
required=False,
)
parser.add_argument(
"--dataset_in_streaming_mode",
action="store_true",
help="Whether to use streaming mode for the dataset.",
)
parser.add_argument(
"--do_lower_case", action="store_true", help="lowercase the transcribed text before tokenizing"
)
parser.add_argument(
"--do_remove_punctuation", action="store_true", help="remove punctuation from the transcribed text"
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--max_audio_input_length", type=float, default=30.0, help="Maximum audio length in seconds.")
parser.add_argument(
"--preprocessing_num_workers",
type=int,
default=None,
help="The number of processes to use for the preprocessing.",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--buffer_size",
type=int,
default=5000,
help="Number of samples to prefetch in the streaming mode.",
)
parser.add_argument(
"--dataloader_pin_memory",
action="store_true",
help="Whether or not to pin memory for the DataLoader.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help="Number of subprocesses to use for data loading.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--load_best_model",
action="store_true",
help="Whether to load the best model at the end of training",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--logging_steps",
type=int,
default=100,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--evaluation_steps",
type=int,
default=500,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
# lora/adalora specific args
parser.add_argument(
"--use_peft",
action="store_true",
help="Whether to use PEFT",
)
parser.add_argument(
"--use_adalora",
action="store_true",
help="Whether to use AdaLoRA or LoRA. If set, uses AdaLoRA instead of the default LoRA.",
)
parser.add_argument(
"--init_r",
type=int,
default=12,
help="Initial AdaLoRA rank",
)
parser.add_argument(
"--target_r",
type=int,
default=4,
help="Target AdaLoRA rank",
)
parser.add_argument(
"--tinit",
type=int,
default=200,
help="number of warmup steps for AdaLoRA wherein no pruning is performed",
)
parser.add_argument(
"--tfinal",
type=int,
default=1000,
help=" fix the resulting budget distribution and fine-tune the model for tfinal steps when using AdaLoRA ",
)
parser.add_argument(
"--delta_t",
type=int,
default=10,
help="interval of steps for AdaLoRA to update rank",
)
parser.add_argument(
"--lora_alpha",
type=int,
default=32,
help="LORA alpha",
)
parser.add_argument(
"--r",
type=int,
default=8,
help="LORA rank",
)
parser.add_argument(
"--lora_dropout",
type=float,
default=0.1,
help="LORA dropout",
)
parser.add_argument(
"--orth_reg_weight",
type=float,
default=0.5,
help="Orthogonal regularization weight",
)
parser.add_argument(
"--debug_mode",
action="store_true",
help="Whether to use debug mode",
)
args = parser.parse_args()
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
def load_streaming_dataset(dataset_name, dataset_config_name, split, **kwargs):
if "+" in split:
# load multiple splits separated by the `+` symbol *with* streaming mode
dataset_splits = [
load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=True, **kwargs)
for split_name in split.split("+")
]
# interleave multiple splits to form one dataset
interleaved_dataset = interleave_datasets(dataset_splits)
return interleaved_dataset
else:
# load a single split *with* streaming mode
dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=True, **kwargs)
return dataset
def prepare_dataset_wrapper(do_lower_case, do_remove_punctuation, processor, normalizer):
def prepare_dataset(batch):
# load and (possibly) resample audio data to 16kHz
audio = batch["audio"]
# compute log-Mel input features from input audio array
batch["input_features"] = processor.feature_extractor(
audio["array"], sampling_rate=audio["sampling_rate"]
).input_features[0]
# compute input length of audio sample in seconds
batch["input_length"] = len(audio["array"]) / audio["sampling_rate"]
# optional pre-processing steps
transcription = batch["sentence"]
if do_lower_case:
transcription = transcription.lower()
if do_remove_punctuation:
transcription = normalizer(transcription).strip()
# encode target text to label ids
batch["labels"] = processor.tokenizer(transcription).input_ids
return batch
return prepare_dataset
def save_model_hook(models, weights, output_dir):
for model in models:
model.save_pretrained(output_dir)
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
while len(models) > 0:
model = models.pop()
# pop models so that they are not loaded again
PeftModel.from_pretrained(model.base_model.model, input_dir)
@dataclass
class DataCollatorSpeechSeq2SeqWithPadding:
processor: Any
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need different padding methods
# first treat the audio inputs by simply returning torch tensors
input_features = [{"input_features": feature["input_features"]} for feature in features]
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt")
# get the tokenized label sequences
label_features = [{"input_ids": feature["labels"]} for feature in features]
# pad the labels to max length
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt")
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
# if bos token is appended in previous tokenization step,
# cut bos token here as it's append later anyways
if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():
labels = labels[:, 1:]
batch["labels"] = labels
return batch
def get_audio_length_processor(max_input_length):
def is_audio_in_length_range(length):
return length < max_input_length
return is_audio_in_length_range
def evaluation_loop(model, eval_dataloader, processor, normalizer, metric, forced_decoder_ids, accelerator):
model.eval()
predictions = []
references = []
normalized_predictions = []
normalized_references = []
for _, batch in enumerate(tqdm(eval_dataloader)):
with torch.cuda.amp.autocast():
with torch.no_grad():
generated_tokens = (
model.generate(
input_features=batch["input_features"],
forced_decoder_ids=forced_decoder_ids,
max_new_tokens=255,
)
.cpu()
.numpy()
)
labels = batch["labels"].cpu().numpy()
labels = np.where(labels != -100, labels, processor.tokenizer.pad_token_id)
decoded_preds = processor.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
decoded_labels = processor.tokenizer.batch_decode(labels, skip_special_tokens=True)
predictions.extend(decoded_preds)
references.extend(decoded_labels)
normalized_predictions.extend([normalizer(pred).strip() for pred in decoded_preds])
normalized_references.extend([normalizer(label).strip() for label in decoded_labels])
del generated_tokens, labels, batch
gc.collect()
wer = 100 * metric.compute(predictions=predictions, references=references)
normalized_wer = 100 * metric.compute(predictions=normalized_predictions, references=normalized_references)
eval_metrics = {"eval/wer": wer, "eval/normalized_wer": normalized_wer}
if accelerator.get_tracker("wandb"):
sample_size = min(len(predictions), 256)
ids = [randint(0, len(predictions) - 1) for p in range(0, sample_size)]
sample_predictions = [predictions[i] for i in ids]
sample_references = [references[i] for i in ids]
sample_normalized_predictions = [normalized_predictions[i] for i in ids]
sample_normalized_references = [normalized_references[i] for i in ids]
table_rows = [
list(r)
for r in zip(
sample_predictions, sample_references, sample_normalized_predictions, sample_normalized_references
)
]
eval_metrics["eval_samples"] = wandb.Table(
columns=["predictions", "references", "normalized_predictions", "normalized_references"],
rows=table_rows,
)
return eval_metrics
def main():
args = parse_args()
# initialize accelerator
accelerator = (
Accelerator(
log_with=args.report_to,
project_dir=args.output_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps,
)
if args.with_tracking
else Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# load dataset either in streaming mode or not
processor = WhisperProcessor.from_pretrained(args.model_name_or_path, language=args.language, task=args.task)
normalizer = BasicTextNormalizer()
prepare_dataset = prepare_dataset_wrapper(args.do_lower_case, args.do_remove_punctuation, processor, normalizer)
is_audio_in_length_range = get_audio_length_processor(args.max_audio_input_length)
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)
if args.dataset_in_streaming_mode:
raw_datasets = IterableDatasetDict()
loading_method = load_streaming_dataset
else:
raw_datasets = DatasetDict()
loading_method = load_dataset
if args.debug_mode:
train_split = "train[:100]"
test_split = "test[:10]"
else:
train_split = "train+validation"
test_split = "test"
raw_datasets["train"] = loading_method(
args.dataset_name, args.language_abbr, split=train_split, use_auth_token=True
)
raw_datasets["test"] = loading_method(args.dataset_name, args.language_abbr, split=test_split, use_auth_token=True)
raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000))
logger.info("Dataset loaded: %s", raw_datasets)
logger.info(f'{raw_datasets["train"][0]}')
vectorized_datasets = raw_datasets.map(
prepare_dataset,
remove_columns=list(next(iter(raw_datasets.values())).features),
num_proc=args.preprocessing_num_workers,
).with_format("torch")
if args.dataset_in_streaming_mode:
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(
buffer_size=args.buffer_size,
seed=args.seed,
)
# filter out audio files that are too long from the training set
is_audio_in_length_range = get_audio_length_processor(args.max_audio_input_length)
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
is_audio_in_length_range, input_columns=["input_length"]
)
# get dataloaders
train_dataloader = DataLoader(
vectorized_datasets["train"],
batch_size=args.per_device_train_batch_size,
shuffle=True,
collate_fn=data_collator,
num_workers=args.dataloader_num_workers,
pin_memory=args.dataloader_pin_memory,
)
eval_dataloader = DataLoader(
vectorized_datasets["test"],
batch_size=args.per_device_eval_batch_size,
collate_fn=data_collator,
num_workers=args.dataloader_num_workers,
pin_memory=args.dataloader_pin_memory,
)
# metric
metric = evaluate.load("wer")
# model
model = WhisperForConditionalGeneration.from_pretrained(args.model_name_or_path, load_in_8bit=True)
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
if len(set(model.hf_device_map.values()).intersection({"cpu", "disk"})) > 0:
raise ValueError("Training on CPU or disk is not supported.")
if len(set(model.hf_device_map.values())) > 1:
device_map = model.hf_device_map.copy()
# required because `labels` are on main execution device (0) while the output of `proj_out` is on other device.
# So, this leads to device mismatch error when calculation cross-entropy between logits and labels.
# Won't arise during inference as `labels` aren't supplied during that time
# instead of changing device of one of the tied modules, I have to do this for all tied modules
# else the execution device of remaining tied modules isn't changed
device_map["model.decoder.embed_tokens"] = model._hf_hook.execution_device
device_map["model.decoder.embed_positions"] = model._hf_hook.execution_device
device_map["proj_out"] = model._hf_hook.execution_device
dispatch_model(model, device_map=device_map)
# preparing peft model
if args.use_peft:
from peft import prepare_model_for_int8_training
model = prepare_model_for_int8_training(model)
# as Whisper model uses Conv layer in encoder, checkpointing disables grad computation
# to avoid this, make the inputs trainable
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.model.encoder.conv1.register_forward_hook(make_inputs_require_grad)
# wrapping model with adalora tuner
if args.use_adalora:
config = AdaLoraConfig(
init_r=args.init_r,
target_r=args.target_r,
beta1=0.85,
beta2=0.85,
tinit=args.tinit,
tfinal=args.tfinal,
deltaT=args.delta_t,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
orth_reg_weight=args.orth_reg_weight,
)
else:
config = LoraConfig(
r=args.r,
lora_alpha=args.lora_alpha,
target_modules=["q_proj", "v_proj"],
lora_dropout=args.lora_dropout,
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
# optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
if args.max_train_steps is None:
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# scheduler
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
accelerator.print(model)
# Note here that the max steps is adjusted by the accelerator's num_processes
args.max_train_steps = math.ceil(args.max_train_steps / accelerator.num_processes)
if args.use_peft and args.use_adalora:
model.base_model.peft_config["default"].total_step = args.max_train_steps
# model.base_model.peft_config.total_step = args.max_train_steps
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
run_name = f"run-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers(
"Whisper PEFT Fine-Tuning", config=experiment_config, init_kwargs={"wandb": {"name": run_name}}
)
# saving and loading checkpoints for resuming training
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
global_step = 0
starting_epoch = 0
best_metric = None
resume_step = 0
forced_decoder_ids = processor.get_decoder_prompt_ids(language=args.language, task=args.task)
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
training_difference = os.path.splitext(path)[0]
global_step = resume_step = int(training_difference.replace("step_", ""))
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
# We need to adjust the progress bar to the current step
progress_bar.update(resume_step)
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
running_loss = 0
for step, batch in enumerate(accelerator.skip_first_batches(train_dataloader, num_batches=resume_step)):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
# Update the importance of low-rank matrices
# and allocate the budget accordingly.
# This is only needed for AdaLora.
# Note that this requires parameter gradients.
# Hence being called before optimizer.zero_grad().
if args.use_peft and args.use_adalora:
model.update_and_allocate(global_step)
optimizer.zero_grad()
global_step += 1
progress_bar.update(1)
if args.with_tracking:
step_loss = accelerator.reduce(loss.detach().clone()).item()
total_loss += step_loss
running_loss += step_loss
if global_step % args.checkpointing_steps == 0:
output_dir = os.path.join(args.output_dir, f"step_{global_step}")
accelerator.save_state(output_dir)
if global_step % args.logging_steps == 0:
if args.with_tracking:
accelerator.log({"train/running_loss": running_loss / args.logging_steps}, step=global_step)
running_loss = 0
if global_step % args.evaluation_steps == 0:
eval_metrics = evaluation_loop(
model, eval_dataloader, processor, normalizer, metric, forced_decoder_ids, accelerator
)
if args.with_tracking:
logger.info(f"Step {global_step} eval metrics: {eval_metrics}")
accelerator.log(eval_metrics, step=global_step)
if best_metric is None or eval_metrics["eval/wer"] < best_metric:
best_metric = eval_metrics["eval/wer"]
accelerator.save_state(os.path.join(args.output_dir, "best_checkpoint"))
model.train()
if global_step >= args.max_train_steps:
break
if args.with_tracking:
train_epoch_loss = total_loss / (step + 1)
logger.info(f"Epoch {epoch} train loss: {train_epoch_loss}")
accelerator.log({"epoch/train_loss": train_epoch_loss}, step=epoch)
if args.push_to_hub and epoch <= args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, is_main_process=accelerator.is_main_process)
# evaluate the model at the end of training
eval_metrics = evaluation_loop(
model, eval_dataloader, processor, normalizer, metric, forced_decoder_ids, accelerator
)
if args.with_tracking:
logger.info(f"Step {global_step} eval metrics: {eval_metrics}")
accelerator.log(eval_metrics, step=global_step)
if best_metric is None or eval_metrics["eval/wer"] < best_metric:
best_metric = eval_metrics["eval/wer"]
accelerator.save_state(os.path.join(args.output_dir, "best_checkpoint"))
if accelerator.is_main_process:
processor.tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.load_best_model:
# load the best model
accelerator.load_state(os.path.join(args.output_dir, "best_checkpoint"))
model.resize_modules_by_rank_pattern(model.peft_config["default"].rank_pattern, "default")
eval_metrics = evaluation_loop(
model, eval_dataloader, processor, normalizer, metric, forced_decoder_ids, accelerator
)
if args.with_tracking:
best_metrics = {"best_" + k: v for k, v in eval_metrics.items()}
accelerator.log(best_metrics, step=global_step)
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, is_main_process=accelerator.is_main_process)
if accelerator.is_main_process:
processor.tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
eval_metrics.pop("eval_samples")
json.dump(eval_metrics, f)
if __name__ == "__main__":
main() |