File size: 12,619 Bytes
c6b1960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import glob\n",
"\n",
"def count_files_by_extension(path, extension):\n",
" \"\"\"\n",
" path : root path to check ,\n",
" extension : .wav , ...\n",
" \"\"\"\n",
"\n",
" files = glob.glob(f\"{path}/*.{extension}\")\n",
" return len(files)\n",
"\n",
"\n",
"root_path = \"./vin_data/vlsp2020_train_set_02/\"\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"num_wav_files = count_files_by_extension(root_path, \"wav\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"num_txt_files = count_files_by_extension(root_path, \"txt\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Số lượng file WAV: 56427\n",
"Số lượng file text: 56427\n"
]
}
],
"source": [
"print(f\"Số lượng file WAV: {num_wav_files}\")\n",
"print(f\"Số lượng file text: {num_txt_files}\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tần số mẫu (sample rate): 16000 Hz\n",
"Số kênh (channels): 1\n"
]
}
],
"source": [
"import os\n",
"import random\n",
"import wave\n",
"\n",
"\n",
"def get_random_wav_file_info(folder_path):\n",
" wav_files = glob.glob(f\"{folder_path}/*.wav\")\n",
" \n",
" if not wav_files:\n",
" return None, None\n",
" \n",
" random_wav_file = random.choice(wav_files)\n",
" \n",
" with wave.open(random_wav_file, 'rb') as wav_file:\n",
" sample_rate = wav_file.getframerate()\n",
" channels = wav_file.getnchannels()\n",
" \n",
" return sample_rate, channels\n",
"\n",
"path_to_wav_folder = \"./vin_data/vlsp2020_train_set_02/\"\n",
"\n",
"sample_rate, channels = get_random_wav_file_info(path_to_wav_folder)\n",
"\n",
"if sample_rate is not None and channels is not None:\n",
" print(f\"Tần số mẫu (sample rate): {sample_rate} Hz\")\n",
" print(f\"Số kênh (channels): {channels}\")\n",
"else:\n",
" print(\"Nothing.\")\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import csv\n",
"from tqdm import tqdm\n",
"\n",
"def create_csv_from_wav_folder(folder_path, output_csv_file):\n",
" wav_files = glob.glob(f\"{folder_path}/*.wav\")\n",
"\n",
" if not wav_files:\n",
" print(\"Không có file WAV nào trong thư mục.\")\n",
" return\n",
"\n",
" # Mở tệp CSV đầu ra và tạo bộ đếm số lượng file WAV\n",
" with open(output_csv_file, mode='w', newline='') as csv_file:\n",
" csv_writer = csv.writer(csv_file)\n",
" csv_writer.writerow(['path', 'name','sentence'])\n",
"\n",
" for wav_file_path in tqdm(wav_files):\n",
"\n",
" text_file_path = os.path.splitext(wav_file_path)[0] + \".txt\"\n",
" if os.path.exists(text_file_path):\n",
" with open(text_file_path, 'r') as txt_file:\n",
" text_content = txt_file.read()\n",
" else:\n",
" text_content = \"Not found.\"\n",
"\n",
" csv_writer.writerow([wav_file_path, os.path.basename(wav_file_path), sample_rate, channels, text_content])\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 56427/56427 [00:37<00:00, 1492.44it/s]\n"
]
}
],
"source": [
"output_csv_file = \"vin.csv\"\n",
"path_to_wav_folder = \"./vin_data/vlsp2020_train_set_02/\"\n",
"create_csv_from_wav_folder(path_to_wav_folder, output_csv_file)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>path</th>\n",
" <th>name</th>\n",
" <th>sentence</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>./vin_data/vlsp2020_train_set_02/spkyut-201907...</td>\n",
" <td>spkyut-20190730-utt000000716.wav</td>\n",
" <td>cây cam canh là loại cây ăn quả dễ trồng dễ ch...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>./vin_data/vlsp2020_train_set_02/database_sa3_...</td>\n",
" <td>database_sa3_1_150h_15Jan2020_cleaned_utt_0000...</td>\n",
" <td>những đặc sản vùng miền nổi tiếng như miến don...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>./vin_data/vlsp2020_train_set_02/speaker_544-0...</td>\n",
" <td>speaker_544-069450-1.wav</td>\n",
" <td>trước thông tin này trương nam thành chia sẻ c...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>./vin_data/vlsp2020_train_set_02/database_sa1_...</td>\n",
" <td>database_sa1_Jan08_Mar19_cleaned_utt_000005361...</td>\n",
" <td>giống như những nữ hoàng á</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>./vin_data/vlsp2020_train_set_02/database_sa2_...</td>\n",
" <td>database_sa2_Jan4_Feb29_cleaned_utt_0000154206...</td>\n",
" <td>thay vì phun toàn bộ cánh đồng bằng hóa chất c...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" path \\\n",
"0 ./vin_data/vlsp2020_train_set_02/spkyut-201907... \n",
"1 ./vin_data/vlsp2020_train_set_02/database_sa3_... \n",
"2 ./vin_data/vlsp2020_train_set_02/speaker_544-0... \n",
"3 ./vin_data/vlsp2020_train_set_02/database_sa1_... \n",
"4 ./vin_data/vlsp2020_train_set_02/database_sa2_... \n",
"\n",
" name \\\n",
"0 spkyut-20190730-utt000000716.wav \n",
"1 database_sa3_1_150h_15Jan2020_cleaned_utt_0000... \n",
"2 speaker_544-069450-1.wav \n",
"3 database_sa1_Jan08_Mar19_cleaned_utt_000005361... \n",
"4 database_sa2_Jan4_Feb29_cleaned_utt_0000154206... \n",
"\n",
" sentence \n",
"0 cây cam canh là loại cây ăn quả dễ trồng dễ ch... \n",
"1 những đặc sản vùng miền nổi tiếng như miến don... \n",
"2 trước thông tin này trương nam thành chia sẻ c... \n",
"3 giống như những nữ hoàng á \n",
"4 thay vì phun toàn bộ cánh đồng bằng hóa chất c... "
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd \n",
"data = pd.read_csv('vin_test.csv')\n",
"data.head(5)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"import csv\n",
"import random\n",
"\n",
"def split_csv_file(input_file, output_file1, output_file2, ratio):\n",
" with open(input_file, 'r', newline='', encoding='utf-8') as csvfile:\n",
" csvreader = csv.reader(csvfile)\n",
" header = next(csvreader) \n",
" \n",
" data = list(csvreader)\n",
" random.shuffle(data)\n",
"\n",
" total_rows = len(data)\n",
" rows_output_file1 = int(total_rows * ratio)\n",
" rows_output_file2 = total_rows - rows_output_file1\n",
" \n",
" # Split the data into two parts\n",
" data1 = data[:rows_output_file1]\n",
" data2 = data[rows_output_file1:]\n",
"\n",
" with open(output_file1, 'w', newline='', encoding='utf-8') as csvfile1:\n",
" csvwriter1 = csv.writer(csvfile1, quotechar='|', quoting=csv.QUOTE_MINIMAL)\n",
" csvwriter1.writerow(header)\n",
" csvwriter1.writerows(data1)\n",
"\n",
" with open(output_file2, 'w', newline='', encoding='utf-8') as csvfile2:\n",
" csvwriter2 = csv.writer(csvfile2, quotechar='|', quoting=csv.QUOTE_MINIMAL)\n",
" csvwriter2.writerow(header)\n",
" csvwriter2.writerows(data2)\n",
"\n",
"input_file = 'vin.csv'\n",
"output_file1 = 'vin_train.csv'\n",
"output_file2 = 'vin_test.csv'\n",
"ratio = 0.8 \n",
"\n",
"split_csv_file(input_file, output_file1, output_file2, ratio)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset, DatasetDict\n",
"\n",
"vivos = DatasetDict()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import numpy as np\n",
"\n",
"import torch\n",
"import torchaudio\n",
"\n",
"import pandas as pd\n",
"import whisper\n",
"import torchaudio.transforms as at\n",
"from pathlib import Path\n",
"\n",
"def load_wave(wave_path, sample_rate:int=16000) -> torch.Tensor:\n",
" waveform, sr = torchaudio.load(wave_path, normalize=True)\n",
" if sample_rate != sr:\n",
" waveform = at.Resample(sr, sample_rate)(waveform)\n",
" return waveform\n",
"\n",
"\n",
"\n",
"def get_list_files_vin100h(phase, dataset_path='./vin_data/vlsp2020_train_set_02/', text_max_length=10000, audio_max_sample_length=1000000, sample_rate=16000):\n",
" audio_transcript_pair_list = []\n",
" if phase == 'train':\n",
" csv_file = 'vin_train.csv'\n",
" else:\n",
" csv_file = 'vin_test.csv'\n",
" df = pd.read_csv(csv_file)\n",
" for index, row in df.iterrows():\n",
" new_path = Path(row['path'])\n",
" audio_id = index\n",
" text = row['sentence']\n",
" if new_path.exists():\n",
" audio = load_wave(new_path, sample_rate=sample_rate)[0]\n",
" # if len(text) > text_max_length or len(audio) > audio_max_sample_length:\n",
" # print('skip file:', new_path, 'with len text:', len(text), 'and len audio', len(audio))\n",
" # continue\n",
" audio_transcript_pair_list.append((audio_id, str(new_path), text))\n",
" print(audio_transcript_pair_list)\n",
" return audio, audio_transcript_pair_list\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"get_list_files_vin100h(phase='train')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "DUY",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|