File size: 2,194 Bytes
c6b1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import argparse
import functools
import os

from transformers import WhisperForConditionalGeneration, WhisperFeatureExtractor, WhisperTokenizerFast,\
    WhisperProcessor
from peft import PeftModel, PeftConfig
from utils.utils import print_arguments, add_arguments

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("lora_model", type=str, default="output/whisper-tiny/checkpoint-best/", help="微调保存的模型路径")
add_arg('output_dir', type=str, default='models/',    help="合并模型的保存目录")
add_arg("local_files_only", type=bool, default=False, help="是否只在本地加载模型,不尝试下载")
args = parser.parse_args()
print_arguments(args)

assert os.path.exists(args.lora_model), f"模型文件{args.lora_model}不存在"

peft_config = PeftConfig.from_pretrained(args.lora_model)
#
base_model = WhisperForConditionalGeneration.from_pretrained(peft_config.base_model_name_or_path, device_map={"": "cpu"},
                                                             local_files_only=args.local_files_only)

model = PeftModel.from_pretrained(base_model, args.lora_model, local_files_only=args.local_files_only)
feature_extractor = WhisperFeatureExtractor.from_pretrained(peft_config.base_model_name_or_path,
                                                            local_files_only=args.local_files_only)
tokenizer = WhisperTokenizerFast.from_pretrained(peft_config.base_model_name_or_path,
                                                 local_files_only=args.local_files_only)
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path,
                                             local_files_only=args.local_files_only)


model = model.merge_and_unload()
model.train(False)

save_directory = os.path.join(args.output_dir, f'{os.path.basename(peft_config.base_model_name_or_path)}-finetune')
os.makedirs(save_directory, exist_ok=True)

model.save_pretrained(save_directory)
feature_extractor.save_pretrained(save_directory)
tokenizer.save_pretrained(save_directory)
processor.save_pretrained(save_directory)
print(f'合并模型保持在:{save_directory}')