File size: 95,088 Bytes
c6b1960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9d7b03aae28b4282b143eb17c3d8d687",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Found cached dataset vivos (/home/tesla/.cache/huggingface/datasets/vivos/default/1.1.0/ab59078eb266c1a0ea856786ba56b5b8d56f29b42dfb37d92115cf81a7b1a5e0)\n",
      "Found cached dataset vivos (/home/tesla/.cache/huggingface/datasets/vivos/default/1.1.0/ab59078eb266c1a0ea856786ba56b5b8d56f29b42dfb37d92115cf81a7b1a5e0)\n"
     ]
    }
   ],
   "source": [
    "from datasets import load_dataset, DatasetDict\n",
    "\n",
    "vivos = DatasetDict()\n",
    "\n",
    "vivos[\"train\"] = load_dataset(\"vivos\", split=\"train\", use_auth_token=True)\n",
    "vivos[\"test\"] = load_dataset(\"vivos\", split=\"test\", use_auth_token=True)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['speaker_id', 'path', 'audio', 'sentence'],\n",
       "        num_rows: 11660\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['speaker_id', 'path', 'audio', 'sentence'],\n",
       "        num_rows: 760\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "vivos"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "vivos_clean = vivos.remove_columns([\"speaker_id\", \"path\"])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['audio', 'sentence'],\n",
       "        num_rows: 11660\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['audio', 'sentence'],\n",
       "        num_rows: 760\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 40,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "vivos_clean"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'audio': {'path': 'vivos/train/waves/VIVOSSPK27/VIVOSSPK27_084.wav', 'array': array([ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00, ...,\n",
      "        9.15527344e-05, -5.18798828e-04, -9.15527344e-04]), 'sampling_rate': 16000}, 'sentence': 'CHƯA HẾT ĐI KHIẾU NẠI THÌ NHÀ MẠNG BẢO VỀ ĐẠI LÝ CHỌN SỐ KHÁC ĐI'}\n"
     ]
    }
   ],
   "source": [
    "print(vivos_clean['train'][12])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Found cached dataset common_voice_13_0 (/home/tesla/.cache/huggingface/datasets/mozilla-foundation___common_voice_13_0/vi/13.0.0/2506e9a8950f5807ceae08c2920e814222909fd7f477b74f5d225802e9f04055)\n",
      "Found cached dataset common_voice_13_0 (/home/tesla/.cache/huggingface/datasets/mozilla-foundation___common_voice_13_0/vi/13.0.0/2506e9a8950f5807ceae08c2920e814222909fd7f477b74f5d225802e9f04055)\n"
     ]
    }
   ],
   "source": [
    "\n",
    "common_voice = DatasetDict()\n",
    "\n",
    "common_voice[\"train\"] = load_dataset(\"mozilla-foundation/common_voice_13_0\", \"vi\", split=\"train+validation\", use_auth_token=True)\n",
    "common_voice[\"test\"] = load_dataset(\"mozilla-foundation/common_voice_13_0\", \"vi\", split=\"test\", use_auth_token=True)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment', 'variant'],\n",
       "        num_rows: 2854\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment', 'variant'],\n",
       "        num_rows: 1225\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 42,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "common_voice"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [],
   "source": [
    "common_voice_clean = common_voice.remove_columns([\"client_id\", \"path\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\", \"age\", \"accent\", \"variant\"])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 89,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['audio', 'sentence'],\n",
       "        num_rows: 2854\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['audio', 'sentence'],\n",
       "        num_rows: 1225\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 89,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "common_voice_clean"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'common_voice_clean' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[1], line 9\u001b[0m\n\u001b[1;32m      5\u001b[0m     \u001b[39mreturn\u001b[39;00m example\n\u001b[1;32m      7\u001b[0m common_voice_clear \u001b[39m=\u001b[39m DatasetDict()\n\u001b[0;32m----> 9\u001b[0m common_voice_clear[\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m common_voice_clean[\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m]\u001b[39m.\u001b[39mmap(convert_to_uppercase)\n\u001b[1;32m     10\u001b[0m common_voice_clear[\u001b[39m\"\u001b[39m\u001b[39mtest\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m common_voice_clean[\u001b[39m\"\u001b[39m\u001b[39mtest\u001b[39m\u001b[39m\"\u001b[39m]\u001b[39m.\u001b[39mmap(convert_to_uppercase)\n",
      "\u001b[0;31mNameError\u001b[0m: name 'common_voice_clean' is not defined"
     ]
    }
   ],
   "source": [
    "from datasets import DatasetDict\n",
    "\n",
    "def convert_to_uppercase(example):\n",
    "    example[\"sentence\"] = example[\"sentence\"].upper()\n",
    "    return example\n",
    "\n",
    "common_voice_clear = DatasetDict()\n",
    "\n",
    "common_voice_clear[\"train\"] = common_voice_clean[\"train\"].map(convert_to_uppercase)\n",
    "common_voice_clear[\"test\"] = common_voice_clean[\"test\"].map(convert_to_uppercase)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'audio': {'path': '/home/tesla/.cache/huggingface/datasets/downloads/extracted/acb70896120347904e003bb826dcabc1ddd05a02210935cb44ce1c807e8742a5/vi_train_0/common_voice_vi_23901118.mp3', 'array': array([ 0.00000000e+00,  4.20543185e-14,  1.38823347e-14, ...,\n",
      "       -8.41874498e-06, -8.36193431e-06, -6.76584477e-06]), 'sampling_rate': 48000}, 'sentence': 'KHI CON CÓ MẸ'}\n"
     ]
    }
   ],
   "source": [
    "print(common_voice_clear['train'][1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|██████████| 2854/2854 [33:25<00:00,  1.42it/s]\n"
     ]
    }
   ],
   "source": [
    "from pydub import AudioSegment\n",
    "import os\n",
    "\n",
    "from tqdm import tqdm\n",
    "\n",
    "def convert_mp3_to_wav(mp3_path, wav_path, target_sampling_rate):\n",
    "    audio = AudioSegment.from_mp3(mp3_path)\n",
    "    audio = audio.set_frame_rate(target_sampling_rate)\n",
    "    audio.export(wav_path, format='wav')\n",
    "\n",
    "target_sampling_rate = 16000\n",
    "\n",
    "for example in tqdm(common_voice_clear[\"train\"]):\n",
    "    mp3_path = example[\"audio\"][\"path\"]\n",
    "    wav_path = os.path.splitext(mp3_path)[0] + \".wav\"\n",
    "    convert_mp3_to_wav(mp3_path, wav_path, target_sampling_rate)\n",
    "    example[\"audio\"][\"path\"] = wav_path\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {},
   "outputs": [],
   "source": [
    "import datasets\n",
    "from datasets import Audio\n",
    "\n",
    "common_voice_clean = common_voice_clean.cast_column(\"audio\", Audio(sampling_rate=16000))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [],
   "source": [
    "concat = DatasetDict()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "metadata": {},
   "outputs": [],
   "source": [
    "concat[\"train\"] = datasets.concatenate_datasets([common_voice_clean[\"train\"], vivos_clean[\"train\"]])\n",
    "\n",
    "#concat['test']= datasets.concatenate_datasets([common_voice_clean[\"test\"], vivos_clean[\"test\"]])\n",
    "concat['test']= vivos_clean[\"test\"]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['audio', 'sentence'],\n",
       "        num_rows: 14514\n",
       "    })\n",
       "    test: Dataset({\n",
       "        features: ['audio', 'sentence'],\n",
       "        num_rows: 760\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 97,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "concat"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 98,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import WhisperFeatureExtractor\n",
    "\n",
    "feature_extractor = WhisperFeatureExtractor.from_pretrained(\"openai/whisper-small\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 99,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import WhisperTokenizerFast\n",
    "\n",
    "tokenizer = WhisperTokenizerFast.from_pretrained(\"openai/whisper-small\", language=\"Vietnamese\", task=\"transcribe\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Input:                 KHÔNG CÓ AI BÁC BỎ QUYỀN ĐÓ\n",
      "Decoded w/ special:    <|startoftranscript|><|notimestamps|>KHÔNG CÓ AI BÁC BỎ QUYỀN ĐÓ<|endoftext|>\n",
      "Decoded w/out special: KHÔNG CÓ AI BÁC BỎ QUYỀN ĐÓ\n",
      "Are equal:             True\n"
     ]
    }
   ],
   "source": [
    "input_str = concat[\"train\"][8550][\"sentence\"]\n",
    "labels = tokenizer(input_str).input_ids\n",
    "decoded_with_special = tokenizer.decode(labels, skip_special_tokens=False)\n",
    "decoded_str = tokenizer.decode(labels, skip_special_tokens=True)\n",
    "\n",
    "print(f\"Input:                 {input_str}\")\n",
    "print(f\"Decoded w/ special:    {decoded_with_special}\")\n",
    "print(f\"Decoded w/out special: {decoded_str}\")\n",
    "print(f\"Are equal:             {input_str == decoded_str}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 100,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import WhisperProcessor\n",
    "\n",
    "processor = WhisperProcessor.from_pretrained(\"openai/whisper-small\", language=\"Vietnamese\", task=\"transcribe\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "from datasets import Audio\n",
    "\n",
    "concat = concat.cast_column(\"audio\", Audio(sampling_rate=16000))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'audio': {'path': 'vivos/train/waves/VIVOSSPK12/VIVOSSPK12_R077.wav', 'array': array([ 0.00000000e+00,  0.00000000e+00, -3.05175781e-05, ...,\n",
      "        1.31225586e-03,  1.12915039e-03,  1.55639648e-03]), 'sampling_rate': 16000}, 'sentence': 'KIÊN GIANG'}\n"
     ]
    }
   ],
   "source": [
    "print(concat[\"train\"][4500])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 101,
   "metadata": {},
   "outputs": [],
   "source": [
    "def prepare_dataset(batch):\n",
    "    # load and resample audio data from 48 to 16kHz\n",
    "    audio = batch[\"audio\"]\n",
    "\n",
    "    # compute log-Mel input features from input audio array \n",
    "    batch[\"input_features\"] = feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n",
    "\n",
    "    # encode target text to label ids \n",
    "    batch[\"labels\"] = tokenizer(batch[\"sentence\"]).input_ids\n",
    "    return batch\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 102,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c35c921e0dde433fb0ef9346310238a3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map (num_proc=6):   0%|          | 0/14514 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8c5af4ed5f8141d2b0673972f7616941",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map (num_proc=6):   0%|          | 0/760 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "concat = concat.map(prepare_dataset, remove_columns=concat.column_names[\"train\"], num_proc=6)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 103,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "\n",
    "from dataclasses import dataclass\n",
    "from typing import Any, Dict, List, Union\n",
    "\n",
    "@dataclass\n",
    "class DataCollatorSpeechSeq2SeqWithPadding:\n",
    "    processor: Any\n",
    "\n",
    "    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
    "        # split inputs and labels since they have to be of different lengths and need different padding methods\n",
    "        # first treat the audio inputs by simply returning torch tensors\n",
    "        input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n",
    "        batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
    "\n",
    "        # get the tokenized label sequences\n",
    "        label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
    "        # pad the labels to max length\n",
    "        labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
    "\n",
    "        # replace padding with -100 to ignore loss correctly\n",
    "        labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
    "\n",
    "        # if bos token is appended in previous tokenization step,\n",
    "        # cut bos token here as it's append later anyways\n",
    "        if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item():\n",
    "            labels = labels[:, 1:]\n",
    "\n",
    "        batch[\"labels\"] = labels\n",
    "\n",
    "        return batch\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 104,
   "metadata": {},
   "outputs": [],
   "source": [
    "data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 105,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\"  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Train\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 106,
   "metadata": {},
   "outputs": [],
   "source": [
    "import evaluate\n",
    "\n",
    "metric = evaluate.load(\"wer\")\n",
    "\n",
    "\n",
    "def compute_metrics(pred):\n",
    "    pred_ids = pred.predictions\n",
    "    label_ids = pred.label_ids\n",
    "\n",
    "    # replace -100 with the pad_token_id\n",
    "    label_ids[label_ids == -100] = tokenizer.pad_token_id\n",
    "\n",
    "    # we do not want to group tokens when computing the metrics\n",
    "    pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n",
    "    label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n",
    "\n",
    "    wer = 100 * metric.compute(predictions=pred_str, references=label_str)\n",
    "\n",
    "    return {\"wer\": wer}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 107,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import WhisperForConditionalGeneration\n",
    "\n",
    "model = WhisperForConditionalGeneration.from_pretrained(\"openai/whisper-small\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 108,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.config.forced_decoder_ids = None\n",
    "model.config.suppress_tokens = []"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 109,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import Seq2SeqTrainingArguments\n",
    "\n",
    "training_args = Seq2SeqTrainingArguments(\n",
    "    output_dir=\"./vi_whisper-small\",  # change to a repo name of your choice\n",
    "    per_device_train_batch_size=16,\n",
    "    gradient_accumulation_steps=1,  # increase by 2x for every 2x decrease in batch size\n",
    "    learning_rate=1e-4,\n",
    "    warmup_steps=1000,\n",
    "    max_steps=8000,\n",
    "    gradient_checkpointing=True,\n",
    "    fp16=True,\n",
    "    evaluation_strategy=\"steps\",\n",
    "    per_device_eval_batch_size=8,\n",
    "    predict_with_generate=True,\n",
    "    generation_max_length=225,\n",
    "    save_steps=4000,\n",
    "    eval_steps=1000,\n",
    "    logging_steps=25,\n",
    "    report_to=[\"tensorboard\"],\n",
    "    load_best_model_at_end=True,\n",
    "    metric_for_best_model=\"wer\",\n",
    "    greater_is_better=False,\n",
    "    push_to_hub=True,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 126,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/media/tesla/New Volume1/DEMO/DUY/Vietnamese_ASR/./vi_whisper-small is already a clone of https://huggingface.co/DuyTa/vi_whisper-small. Make sure you pull the latest changes with `repo.git_pull()`.\n"
     ]
    },
    {
     "ename": "OSError",
     "evalue": "From https://huggingface.co/DuyTa/vi_whisper-small\n   d7893fc..47c00b5  main       -> origin/main\nhint: You have divergent branches and need to specify how to reconcile them.\nhint: You can do so by running one of the following commands sometime before\nhint: your next pull:\nhint: \nhint:   git config pull.rebase false  # merge (the default strategy)\nhint:   git config pull.rebase true   # rebase\nhint:   git config pull.ff only       # fast-forward only\nhint: \nhint: You can replace \"git config\" with \"git config --global\" to set a default\nhint: preference for all repositories. You can also pass --rebase, --no-rebase,\nhint: or --ff-only on the command line to override the configured default per\nhint: invocation.\nfatal: Need to specify how to reconcile divergent branches.\n",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mCalledProcessError\u001b[0m                        Traceback (most recent call last)",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/huggingface_hub/repository.py:984\u001b[0m, in \u001b[0;36mRepository.git_pull\u001b[0;34m(self, rebase, lfs)\u001b[0m\n\u001b[1;32m    983\u001b[0m \u001b[39mwith\u001b[39;00m _lfs_log_progress():\n\u001b[0;32m--> 984\u001b[0m     result \u001b[39m=\u001b[39m run_subprocess(command, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mlocal_dir)\n\u001b[1;32m    985\u001b[0m     logger\u001b[39m.\u001b[39minfo(result\u001b[39m.\u001b[39mstdout)\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/huggingface_hub/utils/_subprocess.py:83\u001b[0m, in \u001b[0;36mrun_subprocess\u001b[0;34m(command, folder, check, **kwargs)\u001b[0m\n\u001b[1;32m     81\u001b[0m     folder \u001b[39m=\u001b[39m \u001b[39mstr\u001b[39m(folder)\n\u001b[0;32m---> 83\u001b[0m \u001b[39mreturn\u001b[39;00m subprocess\u001b[39m.\u001b[39;49mrun(\n\u001b[1;32m     84\u001b[0m     command,\n\u001b[1;32m     85\u001b[0m     stderr\u001b[39m=\u001b[39;49msubprocess\u001b[39m.\u001b[39;49mPIPE,\n\u001b[1;32m     86\u001b[0m     stdout\u001b[39m=\u001b[39;49msubprocess\u001b[39m.\u001b[39;49mPIPE,\n\u001b[1;32m     87\u001b[0m     check\u001b[39m=\u001b[39;49mcheck,\n\u001b[1;32m     88\u001b[0m     encoding\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mutf-8\u001b[39;49m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m     89\u001b[0m     errors\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mreplace\u001b[39;49m\u001b[39m\"\u001b[39;49m,  \u001b[39m# if not utf-8, replace char by �\u001b[39;49;00m\n\u001b[1;32m     90\u001b[0m     cwd\u001b[39m=\u001b[39;49mfolder \u001b[39mor\u001b[39;49;00m os\u001b[39m.\u001b[39;49mgetcwd(),\n\u001b[1;32m     91\u001b[0m     \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs,\n\u001b[1;32m     92\u001b[0m )\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/subprocess.py:528\u001b[0m, in \u001b[0;36mrun\u001b[0;34m(input, capture_output, timeout, check, *popenargs, **kwargs)\u001b[0m\n\u001b[1;32m    527\u001b[0m     \u001b[39mif\u001b[39;00m check \u001b[39mand\u001b[39;00m retcode:\n\u001b[0;32m--> 528\u001b[0m         \u001b[39mraise\u001b[39;00m CalledProcessError(retcode, process\u001b[39m.\u001b[39margs,\n\u001b[1;32m    529\u001b[0m                                  output\u001b[39m=\u001b[39mstdout, stderr\u001b[39m=\u001b[39mstderr)\n\u001b[1;32m    530\u001b[0m \u001b[39mreturn\u001b[39;00m CompletedProcess(process\u001b[39m.\u001b[39margs, retcode, stdout, stderr)\n",
      "\u001b[0;31mCalledProcessError\u001b[0m: Command '['git', 'pull']' returned non-zero exit status 128.",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mOSError\u001b[0m                                   Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[126], line 3\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mtransformers\u001b[39;00m \u001b[39mimport\u001b[39;00m Seq2SeqTrainer\n\u001b[0;32m----> 3\u001b[0m trainer \u001b[39m=\u001b[39m Seq2SeqTrainer(\n\u001b[1;32m      4\u001b[0m     args\u001b[39m=\u001b[39;49mtraining_args,\n\u001b[1;32m      5\u001b[0m     model\u001b[39m=\u001b[39;49mmodel,\n\u001b[1;32m      6\u001b[0m     train_dataset\u001b[39m=\u001b[39;49mconcat[\u001b[39m\"\u001b[39;49m\u001b[39mtrain\u001b[39;49m\u001b[39m\"\u001b[39;49m],\n\u001b[1;32m      7\u001b[0m \n\u001b[1;32m      8\u001b[0m \n\u001b[1;32m      9\u001b[0m \n\u001b[1;32m     10\u001b[0m \n\u001b[1;32m     11\u001b[0m     eval_dataset\u001b[39m=\u001b[39;49mconcat[\u001b[39m\"\u001b[39;49m\u001b[39mtest\u001b[39;49m\u001b[39m\"\u001b[39;49m],\n\u001b[1;32m     12\u001b[0m     data_collator\u001b[39m=\u001b[39;49mdata_collator,\n\u001b[1;32m     13\u001b[0m     compute_metrics\u001b[39m=\u001b[39;49mcompute_metrics,\n\u001b[1;32m     14\u001b[0m     tokenizer\u001b[39m=\u001b[39;49mprocessor\u001b[39m.\u001b[39;49mfeature_extractor,\n\u001b[1;32m     15\u001b[0m )\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/trainer_seq2seq.py:56\u001b[0m, in \u001b[0;36mSeq2SeqTrainer.__init__\u001b[0;34m(self, model, args, data_collator, train_dataset, eval_dataset, tokenizer, model_init, compute_metrics, callbacks, optimizers, preprocess_logits_for_metrics)\u001b[0m\n\u001b[1;32m     42\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__init__\u001b[39m(\n\u001b[1;32m     43\u001b[0m     \u001b[39mself\u001b[39m,\n\u001b[1;32m     44\u001b[0m     model: Union[\u001b[39m\"\u001b[39m\u001b[39mPreTrainedModel\u001b[39m\u001b[39m\"\u001b[39m, nn\u001b[39m.\u001b[39mModule] \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     54\u001b[0m     preprocess_logits_for_metrics: Optional[Callable[[torch\u001b[39m.\u001b[39mTensor, torch\u001b[39m.\u001b[39mTensor], torch\u001b[39m.\u001b[39mTensor]] \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m,\n\u001b[1;32m     55\u001b[0m ):\n\u001b[0;32m---> 56\u001b[0m     \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__init__\u001b[39;49m(\n\u001b[1;32m     57\u001b[0m         model\u001b[39m=\u001b[39;49mmodel,\n\u001b[1;32m     58\u001b[0m         args\u001b[39m=\u001b[39;49margs,\n\u001b[1;32m     59\u001b[0m         data_collator\u001b[39m=\u001b[39;49mdata_collator,\n\u001b[1;32m     60\u001b[0m         train_dataset\u001b[39m=\u001b[39;49mtrain_dataset,\n\u001b[1;32m     61\u001b[0m         eval_dataset\u001b[39m=\u001b[39;49meval_dataset,\n\u001b[1;32m     62\u001b[0m         tokenizer\u001b[39m=\u001b[39;49mtokenizer,\n\u001b[1;32m     63\u001b[0m         model_init\u001b[39m=\u001b[39;49mmodel_init,\n\u001b[1;32m     64\u001b[0m         compute_metrics\u001b[39m=\u001b[39;49mcompute_metrics,\n\u001b[1;32m     65\u001b[0m         callbacks\u001b[39m=\u001b[39;49mcallbacks,\n\u001b[1;32m     66\u001b[0m         optimizers\u001b[39m=\u001b[39;49moptimizers,\n\u001b[1;32m     67\u001b[0m         preprocess_logits_for_metrics\u001b[39m=\u001b[39;49mpreprocess_logits_for_metrics,\n\u001b[1;32m     68\u001b[0m     )\n\u001b[1;32m     70\u001b[0m     \u001b[39m# Override self.model.generation_config if a GenerationConfig is specified in args.\u001b[39;00m\n\u001b[1;32m     71\u001b[0m     \u001b[39m# Priority: args.generation_config > model.generation_config > default GenerationConfig.\u001b[39;00m\n\u001b[1;32m     72\u001b[0m     \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39margs\u001b[39m.\u001b[39mgeneration_config \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/trainer.py:551\u001b[0m, in \u001b[0;36mTrainer.__init__\u001b[0;34m(self, model, args, data_collator, train_dataset, eval_dataset, tokenizer, model_init, compute_metrics, callbacks, optimizers, preprocess_logits_for_metrics)\u001b[0m\n\u001b[1;32m    549\u001b[0m \u001b[39m# Create clone of distant repo and output directory if needed\u001b[39;00m\n\u001b[1;32m    550\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39margs\u001b[39m.\u001b[39mpush_to_hub:\n\u001b[0;32m--> 551\u001b[0m     \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49minit_git_repo(at_init\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m)\n\u001b[1;32m    552\u001b[0m     \u001b[39m# In case of pull, we need to make sure every process has the latest.\u001b[39;00m\n\u001b[1;32m    553\u001b[0m     \u001b[39mif\u001b[39;00m is_torch_tpu_available():\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/trainer.py:3449\u001b[0m, in \u001b[0;36mTrainer.init_git_repo\u001b[0;34m(self, at_init)\u001b[0m\n\u001b[1;32m   3446\u001b[0m     \u001b[39melse\u001b[39;00m:\n\u001b[1;32m   3447\u001b[0m         \u001b[39mraise\u001b[39;00m\n\u001b[0;32m-> 3449\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrepo\u001b[39m.\u001b[39;49mgit_pull()\n\u001b[1;32m   3451\u001b[0m \u001b[39m# By default, ignore the checkpoint folders\u001b[39;00m\n\u001b[1;32m   3452\u001b[0m \u001b[39mif\u001b[39;00m (\n\u001b[1;32m   3453\u001b[0m     \u001b[39mnot\u001b[39;00m os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mexists(os\u001b[39m.\u001b[39mpath\u001b[39m.\u001b[39mjoin(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39margs\u001b[39m.\u001b[39moutput_dir, \u001b[39m\"\u001b[39m\u001b[39m.gitignore\u001b[39m\u001b[39m\"\u001b[39m))\n\u001b[1;32m   3454\u001b[0m     \u001b[39mand\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39margs\u001b[39m.\u001b[39mhub_strategy \u001b[39m!=\u001b[39m HubStrategy\u001b[39m.\u001b[39mALL_CHECKPOINTS\n\u001b[1;32m   3455\u001b[0m ):\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/huggingface_hub/repository.py:987\u001b[0m, in \u001b[0;36mRepository.git_pull\u001b[0;34m(self, rebase, lfs)\u001b[0m\n\u001b[1;32m    985\u001b[0m         logger\u001b[39m.\u001b[39minfo(result\u001b[39m.\u001b[39mstdout)\n\u001b[1;32m    986\u001b[0m \u001b[39mexcept\u001b[39;00m subprocess\u001b[39m.\u001b[39mCalledProcessError \u001b[39mas\u001b[39;00m exc:\n\u001b[0;32m--> 987\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mEnvironmentError\u001b[39;00m(exc\u001b[39m.\u001b[39mstderr)\n",
      "\u001b[0;31mOSError\u001b[0m: From https://huggingface.co/DuyTa/vi_whisper-small\n   d7893fc..47c00b5  main       -> origin/main\nhint: You have divergent branches and need to specify how to reconcile them.\nhint: You can do so by running one of the following commands sometime before\nhint: your next pull:\nhint: \nhint:   git config pull.rebase false  # merge (the default strategy)\nhint:   git config pull.rebase true   # rebase\nhint:   git config pull.ff only       # fast-forward only\nhint: \nhint: You can replace \"git config\" with \"git config --global\" to set a default\nhint: preference for all repositories. You can also pass --rebase, --no-rebase,\nhint: or --ff-only on the command line to override the configured default per\nhint: invocation.\nfatal: Need to specify how to reconcile divergent branches.\n"
     ]
    }
   ],
   "source": [
    "from transformers import Seq2SeqTrainer\n",
    "\n",
    "trainer = Seq2SeqTrainer(\n",
    "    args=training_args,\n",
    "    model=model,\n",
    "    train_dataset=concat[\"train\"],\n",
    "\n",
    "    eval_dataset=concat[\"test\"],\n",
    "    data_collator=data_collator,\n",
    "    compute_metrics=compute_metrics,\n",
    "    tokenizer=processor.feature_extractor,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 130,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "('./vi_whisper-small/tokenizer_config.json',\n",
       " './vi_whisper-small/special_tokens_map.json',\n",
       " './vi_whisper-small/vocab.json',\n",
       " './vi_whisper-small/merges.txt',\n",
       " './vi_whisper-small/normalizer.json',\n",
       " './vi_whisper-small/added_tokens.json',\n",
       " './vi_whisper-small/tokenizer.json')"
      ]
     },
     "execution_count": 130,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tokenizer.save_pretrained(\"./vi_whisper-small/\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Device 0:\n",
      "  Currently allocated memory: 922.884765625 MB\n",
      "  Peak memory usage: 922.884765625 MB\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "\n",
    "device_count = torch.cuda.device_count()\n",
    "\n",
    "for device in range(device_count):\n",
    "    torch.cuda.device(device)\n",
    "    allocated_memory = torch.cuda.memory_allocated(device)\n",
    "    peak_memory = torch.cuda.max_memory_allocated(device)\n",
    "    print(f\"Device {device}:\")\n",
    "    print(f\"  Currently allocated memory: {allocated_memory / 1024**2} MB\")\n",
    "    print(f\"  Peak memory usage: {peak_memory / 1024**2} MB\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Device 0:\n",
      "  Name: Tesla T4\n",
      "  Max Memory: 14966.375 MB\n"
     ]
    }
   ],
   "source": [
    "device_count = torch.cuda.device_count()\n",
    "\n",
    "for device in range(device_count):\n",
    "    properties = torch.cuda.get_device_properties(device)\n",
    "    print(f\"Device {device}:\")\n",
    "    print(f\"  Name: {properties.name}\")\n",
    "    print(f\"  Max Memory: {properties.total_memory / 1024**2} MB\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 111,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/tesla/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "da5a536a979e4d34bc59eaede9204d06",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/8000 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'loss': 3.8537, 'learning_rate': 2.1000000000000002e-06, 'epoch': 0.03}\n",
      "{'loss': 2.2347, 'learning_rate': 4.6e-06, 'epoch': 0.06}\n",
      "{'loss': 1.2627, 'learning_rate': 7.1e-06, 'epoch': 0.08}\n",
      "{'loss': 0.8976, 'learning_rate': 9.600000000000001e-06, 'epoch': 0.11}\n",
      "{'loss': 0.7313, 'learning_rate': 1.2100000000000001e-05, 'epoch': 0.14}\n",
      "{'loss': 0.6526, 'learning_rate': 1.4599999999999999e-05, 'epoch': 0.17}\n",
      "{'loss': 0.7221, 'learning_rate': 1.7000000000000003e-05, 'epoch': 0.19}\n",
      "{'loss': 0.6478, 'learning_rate': 1.9500000000000003e-05, 'epoch': 0.22}\n",
      "{'loss': 1.7029, 'learning_rate': 2.19e-05, 'epoch': 0.25}\n",
      "{'loss': 1.1476, 'learning_rate': 2.44e-05, 'epoch': 0.28}\n",
      "{'loss': 0.5837, 'learning_rate': 2.6900000000000003e-05, 'epoch': 0.3}\n",
      "{'loss': 0.5912, 'learning_rate': 2.94e-05, 'epoch': 0.33}\n",
      "{'loss': 0.6872, 'learning_rate': 3.19e-05, 'epoch': 0.36}\n",
      "{'loss': 0.4103, 'learning_rate': 3.4399999999999996e-05, 'epoch': 0.39}\n",
      "{'loss': 0.4293, 'learning_rate': 3.69e-05, 'epoch': 0.41}\n",
      "{'loss': 0.3055, 'learning_rate': 3.94e-05, 'epoch': 0.44}\n",
      "{'loss': 0.311, 'learning_rate': 4.19e-05, 'epoch': 0.47}\n",
      "{'loss': 0.3212, 'learning_rate': 4.44e-05, 'epoch': 0.5}\n",
      "{'loss': 0.2917, 'learning_rate': 4.69e-05, 'epoch': 0.52}\n",
      "{'loss': 0.2975, 'learning_rate': 4.94e-05, 'epoch': 0.55}\n",
      "{'loss': 0.3254, 'learning_rate': 5.19e-05, 'epoch': 0.58}\n",
      "{'loss': 0.2825, 'learning_rate': 5.440000000000001e-05, 'epoch': 0.61}\n",
      "{'loss': 0.2929, 'learning_rate': 5.69e-05, 'epoch': 0.63}\n",
      "{'loss': 0.3056, 'learning_rate': 5.94e-05, 'epoch': 0.66}\n",
      "{'loss': 0.3105, 'learning_rate': 6.19e-05, 'epoch': 0.69}\n",
      "{'loss': 0.3702, 'learning_rate': 6.440000000000001e-05, 'epoch': 0.72}\n",
      "{'loss': 0.2684, 'learning_rate': 6.690000000000001e-05, 'epoch': 0.74}\n",
      "{'loss': 0.2767, 'learning_rate': 6.939999999999999e-05, 'epoch': 0.77}\n",
      "{'loss': 0.315, 'learning_rate': 7.19e-05, 'epoch': 0.8}\n",
      "{'loss': 0.3132, 'learning_rate': 7.44e-05, 'epoch': 0.83}\n",
      "{'loss': 0.3933, 'learning_rate': 7.69e-05, 'epoch': 0.85}\n",
      "{'loss': 0.311, 'learning_rate': 7.94e-05, 'epoch': 0.88}\n",
      "{'loss': 0.3104, 'learning_rate': 8.19e-05, 'epoch': 0.91}\n",
      "{'loss': 0.297, 'learning_rate': 8.44e-05, 'epoch': 0.94}\n",
      "{'loss': 0.3094, 'learning_rate': 8.69e-05, 'epoch': 0.96}\n",
      "{'loss': 0.29, 'learning_rate': 8.94e-05, 'epoch': 0.99}\n",
      "{'loss': 0.2712, 'learning_rate': 9.190000000000001e-05, 'epoch': 1.02}\n",
      "{'loss': 0.262, 'learning_rate': 9.44e-05, 'epoch': 1.05}\n",
      "{'loss': 0.2481, 'learning_rate': 9.69e-05, 'epoch': 1.07}\n",
      "{'loss': 0.249, 'learning_rate': 9.94e-05, 'epoch': 1.1}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ea1e7cf193cc4b5dacd0883200ff6ef6",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/95 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.3765707015991211, 'eval_wer': 32.16783216783217, 'eval_runtime': 349.1035, 'eval_samples_per_second': 2.177, 'eval_steps_per_second': 0.272, 'epoch': 1.1}\n",
      "{'loss': 0.2729, 'learning_rate': 9.972857142857144e-05, 'epoch': 1.13}\n",
      "{'loss': 0.267, 'learning_rate': 9.937142857142857e-05, 'epoch': 1.16}\n",
      "{'loss': 0.2617, 'learning_rate': 9.901428571428571e-05, 'epoch': 1.18}\n",
      "{'loss': 0.2613, 'learning_rate': 9.865714285714286e-05, 'epoch': 1.21}\n",
      "{'loss': 0.2736, 'learning_rate': 9.83e-05, 'epoch': 1.24}\n",
      "{'loss': 0.245, 'learning_rate': 9.794285714285714e-05, 'epoch': 1.27}\n",
      "{'loss': 0.2385, 'learning_rate': 9.75857142857143e-05, 'epoch': 1.29}\n",
      "{'loss': 0.258, 'learning_rate': 9.722857142857144e-05, 'epoch': 1.32}\n",
      "{'loss': 0.2623, 'learning_rate': 9.687142857142858e-05, 'epoch': 1.35}\n",
      "{'loss': 0.2346, 'learning_rate': 9.651428571428572e-05, 'epoch': 1.38}\n",
      "{'loss': 0.2376, 'learning_rate': 9.615714285714286e-05, 'epoch': 1.4}\n",
      "{'loss': 0.246, 'learning_rate': 9.58e-05, 'epoch': 1.43}\n",
      "{'loss': 0.2201, 'learning_rate': 9.544285714285715e-05, 'epoch': 1.46}\n",
      "{'loss': 0.2233, 'learning_rate': 9.508571428571429e-05, 'epoch': 1.49}\n",
      "{'loss': 0.2154, 'learning_rate': 9.472857142857143e-05, 'epoch': 1.51}\n",
      "{'loss': 0.2348, 'learning_rate': 9.437142857142857e-05, 'epoch': 1.54}\n",
      "{'loss': 0.2159, 'learning_rate': 9.401428571428572e-05, 'epoch': 1.57}\n",
      "{'loss': 0.2265, 'learning_rate': 9.365714285714286e-05, 'epoch': 1.6}\n",
      "{'loss': 0.2118, 'learning_rate': 9.33e-05, 'epoch': 1.62}\n",
      "{'loss': 0.2223, 'learning_rate': 9.294285714285714e-05, 'epoch': 1.65}\n",
      "{'loss': 0.2, 'learning_rate': 9.258571428571428e-05, 'epoch': 1.68}\n",
      "{'loss': 0.206, 'learning_rate': 9.222857142857142e-05, 'epoch': 1.71}\n",
      "{'loss': 0.1979, 'learning_rate': 9.187142857142858e-05, 'epoch': 1.73}\n",
      "{'loss': 0.2022, 'learning_rate': 9.151428571428572e-05, 'epoch': 1.76}\n",
      "{'loss': 0.2028, 'learning_rate': 9.115714285714286e-05, 'epoch': 1.79}\n",
      "{'loss': 0.2161, 'learning_rate': 9.080000000000001e-05, 'epoch': 1.82}\n",
      "{'loss': 0.1964, 'learning_rate': 9.044285714285715e-05, 'epoch': 1.84}\n",
      "{'loss': 0.2151, 'learning_rate': 9.008571428571429e-05, 'epoch': 1.87}\n",
      "{'loss': 0.2056, 'learning_rate': 8.972857142857143e-05, 'epoch': 1.9}\n",
      "{'loss': 0.189, 'learning_rate': 8.937142857142857e-05, 'epoch': 1.93}\n",
      "{'loss': 0.1944, 'learning_rate': 8.901428571428571e-05, 'epoch': 1.95}\n",
      "{'loss': 0.1834, 'learning_rate': 8.865714285714287e-05, 'epoch': 1.98}\n",
      "{'loss': 0.1557, 'learning_rate': 8.83e-05, 'epoch': 2.01}\n",
      "{'loss': 0.1337, 'learning_rate': 8.794285714285714e-05, 'epoch': 2.04}\n",
      "{'loss': 0.1338, 'learning_rate': 8.75857142857143e-05, 'epoch': 2.06}\n",
      "{'loss': 0.1338, 'learning_rate': 8.722857142857144e-05, 'epoch': 2.09}\n",
      "{'loss': 0.1385, 'learning_rate': 8.687142857142856e-05, 'epoch': 2.12}\n",
      "{'loss': 0.1259, 'learning_rate': 8.651428571428572e-05, 'epoch': 2.15}\n",
      "{'loss': 0.1268, 'learning_rate': 8.615714285714286e-05, 'epoch': 2.18}\n",
      "{'loss': 0.1416, 'learning_rate': 8.58e-05, 'epoch': 2.2}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2b48a513542d43558d8fef6a8ef00629",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/95 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.2880653738975525, 'eval_wer': 46.464646464646464, 'eval_runtime': 337.0754, 'eval_samples_per_second': 2.255, 'eval_steps_per_second': 0.282, 'epoch': 2.2}\n",
      "{'loss': 0.1271, 'learning_rate': 8.544285714285715e-05, 'epoch': 2.23}\n",
      "{'loss': 0.1345, 'learning_rate': 8.508571428571429e-05, 'epoch': 2.26}\n",
      "{'loss': 0.149, 'learning_rate': 8.472857142857143e-05, 'epoch': 2.29}\n",
      "{'loss': 0.1289, 'learning_rate': 8.437142857142859e-05, 'epoch': 2.31}\n",
      "{'loss': 0.1391, 'learning_rate': 8.401428571428573e-05, 'epoch': 2.34}\n",
      "{'loss': 0.1532, 'learning_rate': 8.365714285714285e-05, 'epoch': 2.37}\n",
      "{'loss': 0.1283, 'learning_rate': 8.33e-05, 'epoch': 2.4}\n",
      "{'loss': 0.1336, 'learning_rate': 8.294285714285715e-05, 'epoch': 2.42}\n",
      "{'loss': 0.129, 'learning_rate': 8.258571428571429e-05, 'epoch': 2.45}\n",
      "{'loss': 0.1399, 'learning_rate': 8.222857142857144e-05, 'epoch': 2.48}\n",
      "{'loss': 0.1411, 'learning_rate': 8.187142857142858e-05, 'epoch': 2.51}\n",
      "{'loss': 0.1298, 'learning_rate': 8.151428571428572e-05, 'epoch': 2.53}\n",
      "{'loss': 0.1397, 'learning_rate': 8.115714285714286e-05, 'epoch': 2.56}\n",
      "{'loss': 0.1356, 'learning_rate': 8.080000000000001e-05, 'epoch': 2.59}\n",
      "{'loss': 0.1366, 'learning_rate': 8.044285714285714e-05, 'epoch': 2.62}\n",
      "{'loss': 0.1331, 'learning_rate': 8.008571428571429e-05, 'epoch': 2.64}\n",
      "{'loss': 0.1297, 'learning_rate': 7.972857142857143e-05, 'epoch': 2.67}\n",
      "{'loss': 0.1414, 'learning_rate': 7.937142857142857e-05, 'epoch': 2.7}\n",
      "{'loss': 0.1189, 'learning_rate': 7.901428571428571e-05, 'epoch': 2.73}\n",
      "{'loss': 0.1416, 'learning_rate': 7.865714285714287e-05, 'epoch': 2.75}\n",
      "{'loss': 0.1378, 'learning_rate': 7.83e-05, 'epoch': 2.78}\n",
      "{'loss': 0.1305, 'learning_rate': 7.794285714285715e-05, 'epoch': 2.81}\n",
      "{'loss': 0.1571, 'learning_rate': 7.75857142857143e-05, 'epoch': 2.84}\n",
      "{'loss': 0.1285, 'learning_rate': 7.722857142857143e-05, 'epoch': 2.86}\n",
      "{'loss': 0.1339, 'learning_rate': 7.687142857142857e-05, 'epoch': 2.89}\n",
      "{'loss': 0.1216, 'learning_rate': 7.651428571428572e-05, 'epoch': 2.92}\n",
      "{'loss': 0.1321, 'learning_rate': 7.615714285714286e-05, 'epoch': 2.95}\n",
      "{'loss': 0.1259, 'learning_rate': 7.58e-05, 'epoch': 2.97}\n",
      "{'loss': 0.1259, 'learning_rate': 7.544285714285715e-05, 'epoch': 3.0}\n",
      "{'loss': 0.0851, 'learning_rate': 7.508571428571429e-05, 'epoch': 3.03}\n",
      "{'loss': 0.0764, 'learning_rate': 7.472857142857143e-05, 'epoch': 3.06}\n",
      "{'loss': 0.0986, 'learning_rate': 7.438571428571429e-05, 'epoch': 3.08}\n",
      "{'loss': 0.0883, 'learning_rate': 7.402857142857143e-05, 'epoch': 3.11}\n",
      "{'loss': 0.0811, 'learning_rate': 7.367142857142858e-05, 'epoch': 3.14}\n",
      "{'loss': 0.0872, 'learning_rate': 7.331428571428571e-05, 'epoch': 3.17}\n",
      "{'loss': 0.0872, 'learning_rate': 7.295714285714286e-05, 'epoch': 3.19}\n",
      "{'loss': 0.0805, 'learning_rate': 7.26e-05, 'epoch': 3.22}\n",
      "{'loss': 0.0803, 'learning_rate': 7.224285714285714e-05, 'epoch': 3.25}\n",
      "{'loss': 0.0753, 'learning_rate': 7.188571428571428e-05, 'epoch': 3.28}\n",
      "{'loss': 0.0839, 'learning_rate': 7.152857142857144e-05, 'epoch': 3.3}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ce95b9d2a270464fbeab22454f214a1d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/95 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.279912531375885, 'eval_wer': 22.779072779072777, 'eval_runtime': 345.4945, 'eval_samples_per_second': 2.2, 'eval_steps_per_second': 0.275, 'epoch': 3.3}\n",
      "{'loss': 0.0885, 'learning_rate': 7.117142857142858e-05, 'epoch': 3.33}\n",
      "{'loss': 0.0845, 'learning_rate': 7.081428571428572e-05, 'epoch': 3.36}\n",
      "{'loss': 0.0761, 'learning_rate': 7.045714285714287e-05, 'epoch': 3.39}\n",
      "{'loss': 0.0756, 'learning_rate': 7.01e-05, 'epoch': 3.41}\n",
      "{'loss': 0.0859, 'learning_rate': 6.974285714285715e-05, 'epoch': 3.44}\n",
      "{'loss': 0.0972, 'learning_rate': 6.938571428571429e-05, 'epoch': 3.47}\n",
      "{'loss': 0.0822, 'learning_rate': 6.902857142857143e-05, 'epoch': 3.5}\n",
      "{'loss': 0.0892, 'learning_rate': 6.867142857142857e-05, 'epoch': 3.52}\n",
      "{'loss': 0.0735, 'learning_rate': 6.831428571428572e-05, 'epoch': 3.55}\n",
      "{'loss': 0.0893, 'learning_rate': 6.795714285714286e-05, 'epoch': 3.58}\n",
      "{'loss': 0.0869, 'learning_rate': 6.76e-05, 'epoch': 3.61}\n",
      "{'loss': 0.0877, 'learning_rate': 6.724285714285714e-05, 'epoch': 3.63}\n",
      "{'loss': 0.07, 'learning_rate': 6.688571428571428e-05, 'epoch': 3.66}\n",
      "{'loss': 0.0807, 'learning_rate': 6.652857142857142e-05, 'epoch': 3.69}\n",
      "{'loss': 0.0831, 'learning_rate': 6.617142857142858e-05, 'epoch': 3.72}\n",
      "{'loss': 0.0836, 'learning_rate': 6.581428571428572e-05, 'epoch': 3.74}\n",
      "{'loss': 0.0875, 'learning_rate': 6.545714285714286e-05, 'epoch': 3.77}\n",
      "{'loss': 0.0846, 'learning_rate': 6.510000000000001e-05, 'epoch': 3.8}\n",
      "{'loss': 0.0779, 'learning_rate': 6.474285714285715e-05, 'epoch': 3.83}\n",
      "{'loss': 0.0871, 'learning_rate': 6.438571428571429e-05, 'epoch': 3.85}\n",
      "{'loss': 0.0777, 'learning_rate': 6.402857142857143e-05, 'epoch': 3.88}\n",
      "{'loss': 0.0856, 'learning_rate': 6.367142857142857e-05, 'epoch': 3.91}\n",
      "{'loss': 0.083, 'learning_rate': 6.331428571428571e-05, 'epoch': 3.94}\n",
      "{'loss': 0.0667, 'learning_rate': 6.295714285714286e-05, 'epoch': 3.96}\n",
      "{'loss': 0.083, 'learning_rate': 6.26e-05, 'epoch': 3.99}\n",
      "{'loss': 0.0505, 'learning_rate': 6.224285714285714e-05, 'epoch': 4.02}\n",
      "{'loss': 0.0426, 'learning_rate': 6.18857142857143e-05, 'epoch': 4.05}\n",
      "{'loss': 0.0453, 'learning_rate': 6.152857142857144e-05, 'epoch': 4.07}\n",
      "{'loss': 0.0482, 'learning_rate': 6.117142857142858e-05, 'epoch': 4.1}\n",
      "{'loss': 0.0511, 'learning_rate': 6.081428571428571e-05, 'epoch': 4.13}\n",
      "{'loss': 0.0583, 'learning_rate': 6.045714285714286e-05, 'epoch': 4.16}\n",
      "{'loss': 0.0466, 'learning_rate': 6.0100000000000004e-05, 'epoch': 4.19}\n",
      "{'loss': 0.0502, 'learning_rate': 5.9742857142857144e-05, 'epoch': 4.21}\n",
      "{'loss': 0.0414, 'learning_rate': 5.938571428571429e-05, 'epoch': 4.24}\n",
      "{'loss': 0.0501, 'learning_rate': 5.902857142857143e-05, 'epoch': 4.27}\n",
      "{'loss': 0.0478, 'learning_rate': 5.867142857142858e-05, 'epoch': 4.3}\n",
      "{'loss': 0.0482, 'learning_rate': 5.8314285714285724e-05, 'epoch': 4.32}\n",
      "{'loss': 0.0463, 'learning_rate': 5.7957142857142864e-05, 'epoch': 4.35}\n",
      "{'loss': 0.0513, 'learning_rate': 5.76e-05, 'epoch': 4.38}\n",
      "{'loss': 0.0546, 'learning_rate': 5.7242857142857144e-05, 'epoch': 4.41}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5b1ec44b408a4de8aa8a3e9702dae453",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/95 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.28944167494773865, 'eval_wer': 21.885521885521886, 'eval_runtime': 344.5818, 'eval_samples_per_second': 2.206, 'eval_steps_per_second': 0.276, 'epoch': 4.41}\n",
      "{'loss': 0.0515, 'learning_rate': 5.6885714285714284e-05, 'epoch': 4.43}\n",
      "{'loss': 0.0394, 'learning_rate': 5.652857142857143e-05, 'epoch': 4.46}\n",
      "{'loss': 0.0562, 'learning_rate': 5.617142857142858e-05, 'epoch': 4.49}\n",
      "{'loss': 0.0532, 'learning_rate': 5.581428571428572e-05, 'epoch': 4.52}\n",
      "{'loss': 0.0525, 'learning_rate': 5.5457142857142864e-05, 'epoch': 4.54}\n",
      "{'loss': 0.0553, 'learning_rate': 5.5100000000000004e-05, 'epoch': 4.57}\n",
      "{'loss': 0.0464, 'learning_rate': 5.474285714285714e-05, 'epoch': 4.6}\n",
      "{'loss': 0.0425, 'learning_rate': 5.4385714285714284e-05, 'epoch': 4.63}\n",
      "{'loss': 0.0529, 'learning_rate': 5.402857142857143e-05, 'epoch': 4.65}\n",
      "{'loss': 0.0534, 'learning_rate': 5.367142857142857e-05, 'epoch': 4.68}\n",
      "{'loss': 0.0505, 'learning_rate': 5.331428571428572e-05, 'epoch': 4.71}\n",
      "{'loss': 0.0416, 'learning_rate': 5.295714285714286e-05, 'epoch': 4.74}\n",
      "{'loss': 0.0438, 'learning_rate': 5.2600000000000005e-05, 'epoch': 4.76}\n",
      "{'loss': 0.0568, 'learning_rate': 5.224285714285715e-05, 'epoch': 4.79}\n",
      "{'loss': 0.0519, 'learning_rate': 5.188571428571429e-05, 'epoch': 4.82}\n",
      "{'loss': 0.0415, 'learning_rate': 5.1528571428571425e-05, 'epoch': 4.85}\n",
      "{'loss': 0.0502, 'learning_rate': 5.117142857142857e-05, 'epoch': 4.87}\n",
      "{'loss': 0.0433, 'learning_rate': 5.081428571428571e-05, 'epoch': 4.9}\n",
      "{'loss': 0.0527, 'learning_rate': 5.045714285714286e-05, 'epoch': 4.93}\n",
      "{'loss': 0.0434, 'learning_rate': 5.0100000000000005e-05, 'epoch': 4.96}\n",
      "{'loss': 0.0485, 'learning_rate': 4.9742857142857145e-05, 'epoch': 4.98}\n",
      "{'loss': 0.0358, 'learning_rate': 4.938571428571429e-05, 'epoch': 5.01}\n",
      "{'loss': 0.0218, 'learning_rate': 4.902857142857143e-05, 'epoch': 5.04}\n",
      "{'loss': 0.0245, 'learning_rate': 4.867142857142857e-05, 'epoch': 5.07}\n",
      "{'loss': 0.0272, 'learning_rate': 4.831428571428572e-05, 'epoch': 5.09}\n",
      "{'loss': 0.0258, 'learning_rate': 4.795714285714286e-05, 'epoch': 5.12}\n",
      "{'loss': 0.0228, 'learning_rate': 4.76e-05, 'epoch': 5.15}\n",
      "{'loss': 0.0275, 'learning_rate': 4.7242857142857145e-05, 'epoch': 5.18}\n",
      "{'loss': 0.0269, 'learning_rate': 4.6885714285714285e-05, 'epoch': 5.2}\n",
      "{'loss': 0.0237, 'learning_rate': 4.652857142857143e-05, 'epoch': 5.23}\n",
      "{'loss': 0.0288, 'learning_rate': 4.617142857142857e-05, 'epoch': 5.26}\n",
      "{'loss': 0.0269, 'learning_rate': 4.581428571428572e-05, 'epoch': 5.29}\n",
      "{'loss': 0.0276, 'learning_rate': 4.545714285714286e-05, 'epoch': 5.31}\n",
      "{'loss': 0.0276, 'learning_rate': 4.5100000000000005e-05, 'epoch': 5.34}\n",
      "{'loss': 0.0242, 'learning_rate': 4.4742857142857145e-05, 'epoch': 5.37}\n",
      "{'loss': 0.0238, 'learning_rate': 4.4385714285714285e-05, 'epoch': 5.4}\n",
      "{'loss': 0.0302, 'learning_rate': 4.402857142857143e-05, 'epoch': 5.42}\n",
      "{'loss': 0.0253, 'learning_rate': 4.367142857142857e-05, 'epoch': 5.45}\n",
      "{'loss': 0.0256, 'learning_rate': 4.331428571428572e-05, 'epoch': 5.48}\n",
      "{'loss': 0.0256, 'learning_rate': 4.295714285714286e-05, 'epoch': 5.51}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2a3e7ace41cd44768ebc093aa571360e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/95 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.3023395836353302, 'eval_wer': 32.2973322973323, 'eval_runtime': 361.3589, 'eval_samples_per_second': 2.103, 'eval_steps_per_second': 0.263, 'epoch': 5.51}\n",
      "{'loss': 0.0215, 'learning_rate': 4.26e-05, 'epoch': 5.53}\n",
      "{'loss': 0.0272, 'learning_rate': 4.2242857142857145e-05, 'epoch': 5.56}\n",
      "{'loss': 0.0268, 'learning_rate': 4.188571428571429e-05, 'epoch': 5.59}\n",
      "{'loss': 0.028, 'learning_rate': 4.1528571428571425e-05, 'epoch': 5.62}\n",
      "{'loss': 0.0209, 'learning_rate': 4.117142857142857e-05, 'epoch': 5.64}\n",
      "{'loss': 0.0258, 'learning_rate': 4.081428571428572e-05, 'epoch': 5.67}\n",
      "{'loss': 0.0249, 'learning_rate': 4.045714285714286e-05, 'epoch': 5.7}\n",
      "{'loss': 0.0249, 'learning_rate': 4.0100000000000006e-05, 'epoch': 5.73}\n",
      "{'loss': 0.0209, 'learning_rate': 3.9742857142857146e-05, 'epoch': 5.75}\n",
      "{'loss': 0.02, 'learning_rate': 3.9385714285714286e-05, 'epoch': 5.78}\n",
      "{'loss': 0.0244, 'learning_rate': 3.902857142857143e-05, 'epoch': 5.81}\n",
      "{'loss': 0.025, 'learning_rate': 3.867142857142857e-05, 'epoch': 5.84}\n",
      "{'loss': 0.0282, 'learning_rate': 3.831428571428571e-05, 'epoch': 5.86}\n",
      "{'loss': 0.0271, 'learning_rate': 3.795714285714286e-05, 'epoch': 5.89}\n",
      "{'loss': 0.0233, 'learning_rate': 3.76e-05, 'epoch': 5.92}\n",
      "{'loss': 0.0219, 'learning_rate': 3.7242857142857146e-05, 'epoch': 5.95}\n",
      "{'loss': 0.0232, 'learning_rate': 3.688571428571429e-05, 'epoch': 5.97}\n",
      "{'loss': 0.019, 'learning_rate': 3.6528571428571426e-05, 'epoch': 6.0}\n",
      "{'loss': 0.0152, 'learning_rate': 3.617142857142857e-05, 'epoch': 6.03}\n",
      "{'loss': 0.0111, 'learning_rate': 3.581428571428572e-05, 'epoch': 6.06}\n",
      "{'loss': 0.0162, 'learning_rate': 3.545714285714286e-05, 'epoch': 6.08}\n",
      "{'loss': 0.0126, 'learning_rate': 3.51e-05, 'epoch': 6.11}\n",
      "{'loss': 0.012, 'learning_rate': 3.4742857142857146e-05, 'epoch': 6.14}\n",
      "{'loss': 0.0153, 'learning_rate': 3.4385714285714286e-05, 'epoch': 6.17}\n",
      "{'loss': 0.0133, 'learning_rate': 3.402857142857143e-05, 'epoch': 6.19}\n",
      "{'loss': 0.0112, 'learning_rate': 3.367142857142857e-05, 'epoch': 6.22}\n",
      "{'loss': 0.0187, 'learning_rate': 3.331428571428571e-05, 'epoch': 6.25}\n",
      "{'loss': 0.0134, 'learning_rate': 3.295714285714286e-05, 'epoch': 6.28}\n",
      "{'loss': 0.0112, 'learning_rate': 3.26e-05, 'epoch': 6.31}\n",
      "{'loss': 0.0096, 'learning_rate': 3.2242857142857146e-05, 'epoch': 6.33}\n",
      "{'loss': 0.0112, 'learning_rate': 3.1885714285714286e-05, 'epoch': 6.36}\n",
      "{'loss': 0.0146, 'learning_rate': 3.1528571428571426e-05, 'epoch': 6.39}\n",
      "{'loss': 0.0106, 'learning_rate': 3.117142857142857e-05, 'epoch': 6.42}\n",
      "{'loss': 0.01, 'learning_rate': 3.081428571428572e-05, 'epoch': 6.44}\n",
      "{'loss': 0.0117, 'learning_rate': 3.0457142857142856e-05, 'epoch': 6.47}\n",
      "{'loss': 0.0135, 'learning_rate': 3.01e-05, 'epoch': 6.5}\n",
      "{'loss': 0.0137, 'learning_rate': 2.9742857142857143e-05, 'epoch': 6.53}\n",
      "{'loss': 0.0089, 'learning_rate': 2.938571428571429e-05, 'epoch': 6.55}\n",
      "{'loss': 0.0096, 'learning_rate': 2.9028571428571427e-05, 'epoch': 6.58}\n",
      "{'loss': 0.0111, 'learning_rate': 2.867142857142857e-05, 'epoch': 6.61}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a911edc03d0b43edbd4c59958024dca9",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/95 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.3060542345046997, 'eval_wer': 31.015281015281015, 'eval_runtime': 366.4932, 'eval_samples_per_second': 2.074, 'eval_steps_per_second': 0.259, 'epoch': 6.61}\n",
      "{'loss': 0.0091, 'learning_rate': 2.8314285714285717e-05, 'epoch': 6.64}\n",
      "{'loss': 0.0075, 'learning_rate': 2.795714285714286e-05, 'epoch': 6.66}\n",
      "{'loss': 0.0096, 'learning_rate': 2.7600000000000003e-05, 'epoch': 6.69}\n",
      "{'loss': 0.0071, 'learning_rate': 2.7242857142857143e-05, 'epoch': 6.72}\n",
      "{'loss': 0.0089, 'learning_rate': 2.6885714285714287e-05, 'epoch': 6.75}\n",
      "{'loss': 0.0103, 'learning_rate': 2.652857142857143e-05, 'epoch': 6.77}\n",
      "{'loss': 0.0125, 'learning_rate': 2.6171428571428574e-05, 'epoch': 6.8}\n",
      "{'loss': 0.0082, 'learning_rate': 2.5814285714285713e-05, 'epoch': 6.83}\n",
      "{'loss': 0.0079, 'learning_rate': 2.5457142857142857e-05, 'epoch': 6.86}\n",
      "{'loss': 0.0108, 'learning_rate': 2.51e-05, 'epoch': 6.88}\n",
      "{'loss': 0.0084, 'learning_rate': 2.4742857142857147e-05, 'epoch': 6.91}\n",
      "{'loss': 0.0107, 'learning_rate': 2.4385714285714287e-05, 'epoch': 6.94}\n",
      "{'loss': 0.009, 'learning_rate': 2.402857142857143e-05, 'epoch': 6.97}\n",
      "{'loss': 0.0081, 'learning_rate': 2.3671428571428574e-05, 'epoch': 6.99}\n",
      "{'loss': 0.0077, 'learning_rate': 2.3314285714285717e-05, 'epoch': 7.02}\n",
      "{'loss': 0.0064, 'learning_rate': 2.2957142857142857e-05, 'epoch': 7.05}\n",
      "{'loss': 0.0079, 'learning_rate': 2.26e-05, 'epoch': 7.08}\n",
      "{'loss': 0.0063, 'learning_rate': 2.2242857142857144e-05, 'epoch': 7.1}\n",
      "{'loss': 0.0044, 'learning_rate': 2.1885714285714287e-05, 'epoch': 7.13}\n",
      "{'loss': 0.0041, 'learning_rate': 2.1528571428571427e-05, 'epoch': 7.16}\n",
      "{'loss': 0.0048, 'learning_rate': 2.1171428571428574e-05, 'epoch': 7.19}\n",
      "{'loss': 0.0041, 'learning_rate': 2.0814285714285714e-05, 'epoch': 7.21}\n",
      "{'loss': 0.0031, 'learning_rate': 2.0457142857142857e-05, 'epoch': 7.24}\n",
      "{'loss': 0.0026, 'learning_rate': 2.01e-05, 'epoch': 7.27}\n",
      "{'loss': 0.0031, 'learning_rate': 1.9742857142857144e-05, 'epoch': 7.3}\n",
      "{'loss': 0.0029, 'learning_rate': 1.9385714285714287e-05, 'epoch': 7.32}\n",
      "{'loss': 0.0045, 'learning_rate': 1.9028571428571427e-05, 'epoch': 7.35}\n",
      "{'loss': 0.0024, 'learning_rate': 1.8671428571428574e-05, 'epoch': 7.38}\n",
      "{'loss': 0.002, 'learning_rate': 1.8314285714285714e-05, 'epoch': 7.41}\n",
      "{'loss': 0.0038, 'learning_rate': 1.7957142857142858e-05, 'epoch': 7.43}\n",
      "{'loss': 0.0035, 'learning_rate': 1.76e-05, 'epoch': 7.46}\n",
      "{'loss': 0.0058, 'learning_rate': 1.7242857142857144e-05, 'epoch': 7.49}\n",
      "{'loss': 0.0034, 'learning_rate': 1.6885714285714284e-05, 'epoch': 7.52}\n",
      "{'loss': 0.0036, 'learning_rate': 1.652857142857143e-05, 'epoch': 7.54}\n",
      "{'loss': 0.0031, 'learning_rate': 1.6171428571428574e-05, 'epoch': 7.57}\n",
      "{'loss': 0.0041, 'learning_rate': 1.5814285714285714e-05, 'epoch': 7.6}\n",
      "{'loss': 0.0021, 'learning_rate': 1.5457142857142858e-05, 'epoch': 7.63}\n",
      "{'loss': 0.0032, 'learning_rate': 1.51e-05, 'epoch': 7.65}\n",
      "{'loss': 0.0039, 'learning_rate': 1.4742857142857144e-05, 'epoch': 7.68}\n",
      "{'loss': 0.0028, 'learning_rate': 1.4385714285714286e-05, 'epoch': 7.71}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "3ff56df660d1427daf8f920cd57d67fc",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/95 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.3143082559108734, 'eval_wer': 27.169127169127172, 'eval_runtime': 357.6908, 'eval_samples_per_second': 2.125, 'eval_steps_per_second': 0.266, 'epoch': 7.71}\n",
      "{'loss': 0.0032, 'learning_rate': 1.402857142857143e-05, 'epoch': 7.74}\n",
      "{'loss': 0.0028, 'learning_rate': 1.3671428571428571e-05, 'epoch': 7.76}\n",
      "{'loss': 0.0033, 'learning_rate': 1.3314285714285715e-05, 'epoch': 7.79}\n",
      "{'loss': 0.0052, 'learning_rate': 1.2957142857142856e-05, 'epoch': 7.82}\n",
      "{'loss': 0.0023, 'learning_rate': 1.2600000000000001e-05, 'epoch': 7.85}\n",
      "{'loss': 0.0034, 'learning_rate': 1.2242857142857143e-05, 'epoch': 7.87}\n",
      "{'loss': 0.0026, 'learning_rate': 1.1885714285714286e-05, 'epoch': 7.9}\n",
      "{'loss': 0.0022, 'learning_rate': 1.1528571428571428e-05, 'epoch': 7.93}\n",
      "{'loss': 0.0037, 'learning_rate': 1.1171428571428571e-05, 'epoch': 7.96}\n",
      "{'loss': 0.003, 'learning_rate': 1.0814285714285715e-05, 'epoch': 7.98}\n",
      "{'loss': 0.0009, 'learning_rate': 1.0457142857142856e-05, 'epoch': 8.01}\n",
      "{'loss': 0.0006, 'learning_rate': 1.0100000000000002e-05, 'epoch': 8.04}\n",
      "{'loss': 0.0022, 'learning_rate': 9.742857142857143e-06, 'epoch': 8.07}\n",
      "{'loss': 0.0005, 'learning_rate': 9.385714285714287e-06, 'epoch': 8.09}\n",
      "{'loss': 0.0007, 'learning_rate': 9.02857142857143e-06, 'epoch': 8.12}\n",
      "{'loss': 0.0006, 'learning_rate': 8.671428571428572e-06, 'epoch': 8.15}\n",
      "{'loss': 0.0006, 'learning_rate': 8.314285714285715e-06, 'epoch': 8.18}\n",
      "{'loss': 0.0005, 'learning_rate': 7.957142857142857e-06, 'epoch': 8.2}\n",
      "{'loss': 0.0024, 'learning_rate': 7.6e-06, 'epoch': 8.23}\n",
      "{'loss': 0.0009, 'learning_rate': 7.242857142857143e-06, 'epoch': 8.26}\n",
      "{'loss': 0.0004, 'learning_rate': 6.885714285714286e-06, 'epoch': 8.29}\n",
      "{'loss': 0.0006, 'learning_rate': 6.5285714285714285e-06, 'epoch': 8.31}\n",
      "{'loss': 0.0031, 'learning_rate': 6.171428571428572e-06, 'epoch': 8.34}\n",
      "{'loss': 0.001, 'learning_rate': 5.814285714285714e-06, 'epoch': 8.37}\n",
      "{'loss': 0.0013, 'learning_rate': 5.457142857142857e-06, 'epoch': 8.4}\n",
      "{'loss': 0.0011, 'learning_rate': 5.1e-06, 'epoch': 8.43}\n",
      "{'loss': 0.0004, 'learning_rate': 4.742857142857144e-06, 'epoch': 8.45}\n",
      "{'loss': 0.0012, 'learning_rate': 4.385714285714286e-06, 'epoch': 8.48}\n",
      "{'loss': 0.0013, 'learning_rate': 4.028571428571429e-06, 'epoch': 8.51}\n",
      "{'loss': 0.0008, 'learning_rate': 3.6714285714285717e-06, 'epoch': 8.54}\n",
      "{'loss': 0.0009, 'learning_rate': 3.314285714285714e-06, 'epoch': 8.56}\n",
      "{'loss': 0.0019, 'learning_rate': 2.957142857142857e-06, 'epoch': 8.59}\n",
      "{'loss': 0.0006, 'learning_rate': 2.6e-06, 'epoch': 8.62}\n",
      "{'loss': 0.0004, 'learning_rate': 2.242857142857143e-06, 'epoch': 8.65}\n",
      "{'loss': 0.0005, 'learning_rate': 1.8857142857142858e-06, 'epoch': 8.67}\n",
      "{'loss': 0.0005, 'learning_rate': 1.5285714285714287e-06, 'epoch': 8.7}\n",
      "{'loss': 0.001, 'learning_rate': 1.1714285714285715e-06, 'epoch': 8.73}\n",
      "{'loss': 0.0012, 'learning_rate': 8.142857142857143e-07, 'epoch': 8.76}\n",
      "{'loss': 0.001, 'learning_rate': 4.571428571428572e-07, 'epoch': 8.78}\n",
      "{'loss': 0.0014, 'learning_rate': 1.0000000000000001e-07, 'epoch': 8.81}\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "5120f3a800554c1689dfb561c55440fb",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "  0%|          | 0/95 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'eval_loss': 0.318661630153656, 'eval_wer': 27.36337736337736, 'eval_runtime': 356.3989, 'eval_samples_per_second': 2.132, 'eval_steps_per_second': 0.267, 'epoch': 8.81}\n",
      "{'train_runtime': 48216.7702, 'train_samples_per_second': 2.655, 'train_steps_per_second': 0.166, 'train_loss': 0.13303363310021815, 'epoch': 8.81}\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "TrainOutput(global_step=8000, training_loss=0.13303363310021815, metrics={'train_runtime': 48216.7702, 'train_samples_per_second': 2.655, 'train_steps_per_second': 0.166, 'train_loss': 0.13303363310021815, 'epoch': 8.81})"
      ]
     },
     "execution_count": 111,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "ename": "OSError",
     "evalue": "It looks like the config file at './whisper-base-vi/pytorch_model.bin' is not a valid JSON file.",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mUnicodeDecodeError\u001b[0m                        Traceback (most recent call last)",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/configuration_utils.py:702\u001b[0m, in \u001b[0;36mPretrainedConfig._get_config_dict\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m    700\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m    701\u001b[0m     \u001b[39m# Load config dict\u001b[39;00m\n\u001b[0;32m--> 702\u001b[0m     config_dict \u001b[39m=\u001b[39m \u001b[39mcls\u001b[39;49m\u001b[39m.\u001b[39;49m_dict_from_json_file(resolved_config_file)\n\u001b[1;32m    703\u001b[0m     config_dict[\u001b[39m\"\u001b[39m\u001b[39m_commit_hash\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m commit_hash\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/configuration_utils.py:793\u001b[0m, in \u001b[0;36mPretrainedConfig._dict_from_json_file\u001b[0;34m(cls, json_file)\u001b[0m\n\u001b[1;32m    792\u001b[0m \u001b[39mwith\u001b[39;00m \u001b[39mopen\u001b[39m(json_file, \u001b[39m\"\u001b[39m\u001b[39mr\u001b[39m\u001b[39m\"\u001b[39m, encoding\u001b[39m=\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mutf-8\u001b[39m\u001b[39m\"\u001b[39m) \u001b[39mas\u001b[39;00m reader:\n\u001b[0;32m--> 793\u001b[0m     text \u001b[39m=\u001b[39m reader\u001b[39m.\u001b[39;49mread()\n\u001b[1;32m    794\u001b[0m \u001b[39mreturn\u001b[39;00m json\u001b[39m.\u001b[39mloads(text)\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/codecs.py:322\u001b[0m, in \u001b[0;36mBufferedIncrementalDecoder.decode\u001b[0;34m(self, input, final)\u001b[0m\n\u001b[1;32m    321\u001b[0m data \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mbuffer \u001b[39m+\u001b[39m \u001b[39minput\u001b[39m\n\u001b[0;32m--> 322\u001b[0m (result, consumed) \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_buffer_decode(data, \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49merrors, final)\n\u001b[1;32m    323\u001b[0m \u001b[39m# keep undecoded input until the next call\u001b[39;00m\n",
      "\u001b[0;31mUnicodeDecodeError\u001b[0m: 'utf-8' codec can't decode byte 0x80 in position 64: invalid start byte",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mOSError\u001b[0m                                   Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[34], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m pt_model \u001b[39m=\u001b[39m WhisperForConditionalGeneration\u001b[39m.\u001b[39;49mfrom_pretrained(\u001b[39m\"\u001b[39;49m\u001b[39m./whisper-base-vi/pytorch_model.bin\u001b[39;49m\u001b[39m\"\u001b[39;49m, from_tf\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m)\n\u001b[1;32m      2\u001b[0m pt_model\u001b[39m.\u001b[39msave_pretrained(\u001b[39m\"\u001b[39m\u001b[39m./whisper-base-vi/vi_whisper.pt\u001b[39m\u001b[39m\"\u001b[39m)\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/modeling_utils.py:2325\u001b[0m, in \u001b[0;36mPreTrainedModel.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m   2323\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39misinstance\u001b[39m(config, PretrainedConfig):\n\u001b[1;32m   2324\u001b[0m     config_path \u001b[39m=\u001b[39m config \u001b[39mif\u001b[39;00m config \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39melse\u001b[39;00m pretrained_model_name_or_path\n\u001b[0;32m-> 2325\u001b[0m     config, model_kwargs \u001b[39m=\u001b[39m \u001b[39mcls\u001b[39;49m\u001b[39m.\u001b[39;49mconfig_class\u001b[39m.\u001b[39;49mfrom_pretrained(\n\u001b[1;32m   2326\u001b[0m         config_path,\n\u001b[1;32m   2327\u001b[0m         cache_dir\u001b[39m=\u001b[39;49mcache_dir,\n\u001b[1;32m   2328\u001b[0m         return_unused_kwargs\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m,\n\u001b[1;32m   2329\u001b[0m         force_download\u001b[39m=\u001b[39;49mforce_download,\n\u001b[1;32m   2330\u001b[0m         resume_download\u001b[39m=\u001b[39;49mresume_download,\n\u001b[1;32m   2331\u001b[0m         proxies\u001b[39m=\u001b[39;49mproxies,\n\u001b[1;32m   2332\u001b[0m         local_files_only\u001b[39m=\u001b[39;49mlocal_files_only,\n\u001b[1;32m   2333\u001b[0m         token\u001b[39m=\u001b[39;49mtoken,\n\u001b[1;32m   2334\u001b[0m         revision\u001b[39m=\u001b[39;49mrevision,\n\u001b[1;32m   2335\u001b[0m         subfolder\u001b[39m=\u001b[39;49msubfolder,\n\u001b[1;32m   2336\u001b[0m         _from_auto\u001b[39m=\u001b[39;49mfrom_auto_class,\n\u001b[1;32m   2337\u001b[0m         _from_pipeline\u001b[39m=\u001b[39;49mfrom_pipeline,\n\u001b[1;32m   2338\u001b[0m         \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs,\n\u001b[1;32m   2339\u001b[0m     )\n\u001b[1;32m   2340\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m   2341\u001b[0m     model_kwargs \u001b[39m=\u001b[39m kwargs\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/configuration_utils.py:590\u001b[0m, in \u001b[0;36mPretrainedConfig.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, cache_dir, force_download, local_files_only, token, revision, **kwargs)\u001b[0m\n\u001b[1;32m    586\u001b[0m kwargs[\u001b[39m\"\u001b[39m\u001b[39mrevision\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m revision\n\u001b[1;32m    588\u001b[0m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39m_set_token_in_kwargs(kwargs, token)\n\u001b[0;32m--> 590\u001b[0m config_dict, kwargs \u001b[39m=\u001b[39m \u001b[39mcls\u001b[39;49m\u001b[39m.\u001b[39;49mget_config_dict(pretrained_model_name_or_path, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m    591\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39mmodel_type\u001b[39m\u001b[39m\"\u001b[39m \u001b[39min\u001b[39;00m config_dict \u001b[39mand\u001b[39;00m \u001b[39mhasattr\u001b[39m(\u001b[39mcls\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mmodel_type\u001b[39m\u001b[39m\"\u001b[39m) \u001b[39mand\u001b[39;00m config_dict[\u001b[39m\"\u001b[39m\u001b[39mmodel_type\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m!=\u001b[39m \u001b[39mcls\u001b[39m\u001b[39m.\u001b[39mmodel_type:\n\u001b[1;32m    592\u001b[0m     logger\u001b[39m.\u001b[39mwarning(\n\u001b[1;32m    593\u001b[0m         \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mYou are using a model of type \u001b[39m\u001b[39m{\u001b[39;00mconfig_dict[\u001b[39m'\u001b[39m\u001b[39mmodel_type\u001b[39m\u001b[39m'\u001b[39m]\u001b[39m}\u001b[39;00m\u001b[39m to instantiate a model of type \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    594\u001b[0m         \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mcls\u001b[39m\u001b[39m.\u001b[39mmodel_type\u001b[39m}\u001b[39;00m\u001b[39m. This is not supported for all configurations of models and can yield errors.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    595\u001b[0m     )\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/configuration_utils.py:617\u001b[0m, in \u001b[0;36mPretrainedConfig.get_config_dict\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m    615\u001b[0m original_kwargs \u001b[39m=\u001b[39m copy\u001b[39m.\u001b[39mdeepcopy(kwargs)\n\u001b[1;32m    616\u001b[0m \u001b[39m# Get config dict associated with the base config file\u001b[39;00m\n\u001b[0;32m--> 617\u001b[0m config_dict, kwargs \u001b[39m=\u001b[39m \u001b[39mcls\u001b[39;49m\u001b[39m.\u001b[39;49m_get_config_dict(pretrained_model_name_or_path, \u001b[39m*\u001b[39;49m\u001b[39m*\u001b[39;49mkwargs)\n\u001b[1;32m    618\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39m_commit_hash\u001b[39m\u001b[39m\"\u001b[39m \u001b[39min\u001b[39;00m config_dict:\n\u001b[1;32m    619\u001b[0m     original_kwargs[\u001b[39m\"\u001b[39m\u001b[39m_commit_hash\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m config_dict[\u001b[39m\"\u001b[39m\u001b[39m_commit_hash\u001b[39m\u001b[39m\"\u001b[39m]\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/configuration_utils.py:705\u001b[0m, in \u001b[0;36mPretrainedConfig._get_config_dict\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m    703\u001b[0m     config_dict[\u001b[39m\"\u001b[39m\u001b[39m_commit_hash\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39m=\u001b[39m commit_hash\n\u001b[1;32m    704\u001b[0m \u001b[39mexcept\u001b[39;00m (json\u001b[39m.\u001b[39mJSONDecodeError, \u001b[39mUnicodeDecodeError\u001b[39;00m):\n\u001b[0;32m--> 705\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mEnvironmentError\u001b[39;00m(\n\u001b[1;32m    706\u001b[0m         \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mIt looks like the config file at \u001b[39m\u001b[39m'\u001b[39m\u001b[39m{\u001b[39;00mresolved_config_file\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m is not a valid JSON file.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    707\u001b[0m     )\n\u001b[1;32m    709\u001b[0m \u001b[39mif\u001b[39;00m is_local:\n\u001b[1;32m    710\u001b[0m     logger\u001b[39m.\u001b[39minfo(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mloading configuration file \u001b[39m\u001b[39m{\u001b[39;00mresolved_config_file\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n",
      "\u001b[0;31mOSError\u001b[0m: It looks like the config file at './whisper-base-vi/pytorch_model.bin' is not a valid JSON file."
     ]
    }
   ],
   "source": [
    "pt_model = WhisperForConditionalGeneration.from_pretrained(\"./whisper-base-vi/pytorch_model.bin\", from_tf=True)\n",
    "pt_model.save_pretrained(\"./whisper-base-vi/vi_whisper.pt\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "kwargs = {\n",
    "    \"dataset_tags\": \"vivos-commonvoice\",\n",
    "    \"dataset\": \"Vivos\",  \n",
    "    \"language\": \"vi\",\n",
    "    \"model_name\": \"Whisper Small Vi - Duy Ta\", \n",
    "    \"finetuned_from\": \"openai/whisper-small\",\n",
    "    \"tasks\": \"automatic-speech-recognition\",\n",
    "    \"config\" : None\n",
    "}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 131,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Several commits (2) will be pushed upstream.\n",
      "The progress bars may be unreliable.\n",
      "error: The destination you provided is not a full refname (i.e.,\n",
      "starting with \"refs/\"). We tried to guess what you meant by:\n",
      "\n",
      "- Looking for a ref that matches 'HEAD' on the remote side.\n",
      "- Checking if the <src> being pushed ('HEAD')\n",
      "  is a ref in \"refs/{heads,tags}/\". If so we add a corresponding\n",
      "  refs/{heads,tags}/ prefix on the remote side.\n",
      "\n",
      "Neither worked, so we gave up. You must fully qualify the ref.\n",
      "hint: The <src> part of the refspec is a commit object.\n",
      "hint: Did you mean to create a new branch by pushing to\n",
      "hint: 'HEAD:refs/heads/HEAD'?\n",
      "error: failed to push some refs to 'https://huggingface.co/DuyTa/vi_whisper-small'\n",
      "\n"
     ]
    },
    {
     "ename": "OSError",
     "evalue": "error: The destination you provided is not a full refname (i.e.,\nstarting with \"refs/\"). We tried to guess what you meant by:\n\n- Looking for a ref that matches 'HEAD' on the remote side.\n- Checking if the <src> being pushed ('HEAD')\n  is a ref in \"refs/{heads,tags}/\". If so we add a corresponding\n  refs/{heads,tags}/ prefix on the remote side.\n\nNeither worked, so we gave up. You must fully qualify the ref.\nhint: The <src> part of the refspec is a commit object.\nhint: Did you mean to create a new branch by pushing to\nhint: 'HEAD:refs/heads/HEAD'?\nerror: failed to push some refs to 'https://huggingface.co/DuyTa/vi_whisper-small'\n",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mCalledProcessError\u001b[0m                        Traceback (most recent call last)",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/huggingface_hub/repository.py:1099\u001b[0m, in \u001b[0;36mRepository.git_push\u001b[0;34m(self, upstream, blocking, auto_lfs_prune)\u001b[0m\n\u001b[1;32m   1098\u001b[0m             \u001b[39mif\u001b[39;00m return_code:\n\u001b[0;32m-> 1099\u001b[0m                 \u001b[39mraise\u001b[39;00m subprocess\u001b[39m.\u001b[39mCalledProcessError(return_code, process\u001b[39m.\u001b[39margs, output\u001b[39m=\u001b[39mstdout, stderr\u001b[39m=\u001b[39mstderr)\n\u001b[1;32m   1101\u001b[0m \u001b[39mexcept\u001b[39;00m subprocess\u001b[39m.\u001b[39mCalledProcessError \u001b[39mas\u001b[39;00m exc:\n",
      "\u001b[0;31mCalledProcessError\u001b[0m: Command '['git', 'push', '--set-upstream', 'origin', 'HEAD']' returned non-zero exit status 1.",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mOSError\u001b[0m                                   Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[131], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m trainer\u001b[39m.\u001b[39;49mpush_to_hub(commit_message\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39mchange\u001b[39;49m\u001b[39m\"\u001b[39;49m)\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/trainer.py:3609\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m   3606\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpush_in_progress\u001b[39m.\u001b[39m_process\u001b[39m.\u001b[39mkill()\n\u001b[1;32m   3607\u001b[0m     \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpush_in_progress \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m-> 3609\u001b[0m git_head_commit_url \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrepo\u001b[39m.\u001b[39;49mpush_to_hub(\n\u001b[1;32m   3610\u001b[0m     commit_message\u001b[39m=\u001b[39;49mcommit_message, blocking\u001b[39m=\u001b[39;49mblocking, auto_lfs_prune\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m\n\u001b[1;32m   3611\u001b[0m )\n\u001b[1;32m   3612\u001b[0m \u001b[39m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m   3613\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39margs\u001b[39m.\u001b[39mshould_save:\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/huggingface_hub/repository.py:1307\u001b[0m, in \u001b[0;36mRepository.push_to_hub\u001b[0;34m(self, commit_message, blocking, clean_ok, auto_lfs_prune)\u001b[0m\n\u001b[1;32m   1305\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mgit_add(auto_lfs_track\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[1;32m   1306\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mgit_commit(commit_message)\n\u001b[0;32m-> 1307\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mgit_push(\n\u001b[1;32m   1308\u001b[0m     upstream\u001b[39m=\u001b[39;49m\u001b[39mf\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39morigin \u001b[39;49m\u001b[39m{\u001b[39;49;00m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcurrent_branch\u001b[39m}\u001b[39;49;00m\u001b[39m\"\u001b[39;49m,\n\u001b[1;32m   1309\u001b[0m     blocking\u001b[39m=\u001b[39;49mblocking,\n\u001b[1;32m   1310\u001b[0m     auto_lfs_prune\u001b[39m=\u001b[39;49mauto_lfs_prune,\n\u001b[1;32m   1311\u001b[0m )\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/huggingface_hub/repository.py:1102\u001b[0m, in \u001b[0;36mRepository.git_push\u001b[0;34m(self, upstream, blocking, auto_lfs_prune)\u001b[0m\n\u001b[1;32m   1099\u001b[0m                 \u001b[39mraise\u001b[39;00m subprocess\u001b[39m.\u001b[39mCalledProcessError(return_code, process\u001b[39m.\u001b[39margs, output\u001b[39m=\u001b[39mstdout, stderr\u001b[39m=\u001b[39mstderr)\n\u001b[1;32m   1101\u001b[0m \u001b[39mexcept\u001b[39;00m subprocess\u001b[39m.\u001b[39mCalledProcessError \u001b[39mas\u001b[39;00m exc:\n\u001b[0;32m-> 1102\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mEnvironmentError\u001b[39;00m(exc\u001b[39m.\u001b[39mstderr)\n\u001b[1;32m   1104\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m blocking:\n\u001b[1;32m   1106\u001b[0m     \u001b[39mdef\u001b[39;00m \u001b[39mstatus_method\u001b[39m():\n",
      "\u001b[0;31mOSError\u001b[0m: error: The destination you provided is not a full refname (i.e.,\nstarting with \"refs/\"). We tried to guess what you meant by:\n\n- Looking for a ref that matches 'HEAD' on the remote side.\n- Checking if the <src> being pushed ('HEAD')\n  is a ref in \"refs/{heads,tags}/\". If so we add a corresponding\n  refs/{heads,tags}/ prefix on the remote side.\n\nNeither worked, so we gave up. You must fully qualify the ref.\nhint: The <src> part of the refspec is a commit object.\nhint: Did you mean to create a new branch by pushing to\nhint: 'HEAD:refs/heads/HEAD'?\nerror: failed to push some refs to 'https://huggingface.co/DuyTa/vi_whisper-small'\n"
     ]
    }
   ],
   "source": [
    "trainer.push_to_hub(commit_message=\"change\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "tags": [
     "parameters"
    ]
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b6e666bab7b2450abf3e2adf07679122",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading (…)lve/main/config.json:   0%|          | 0.00/1.31k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "b212026dca9241cf994f9710f0b93c22",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading (…)okenizer_config.json:   0%|          | 0.00/838 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from transformers import WhisperForConditionalGeneration, WhisperProcessor\n",
    "\n",
    "model = WhisperForConditionalGeneration.from_pretrained(\"DuyTa/vi_whisper\")\n",
    "processor = WhisperProcessor.from_pretrained(\"DuyTa/vi_whisper\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "ename": "RuntimeError",
     "evalue": "Instantiating a pipeline without a task set raised an error: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: './vi_whisper-small'.",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mHFValidationError\u001b[0m                         Traceback (most recent call last)",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/pipelines/__init__.py:432\u001b[0m, in \u001b[0;36mget_task\u001b[0;34m(model, use_auth_token)\u001b[0m\n\u001b[1;32m    431\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[0;32m--> 432\u001b[0m     info \u001b[39m=\u001b[39m model_info(model, token\u001b[39m=\u001b[39;49muse_auth_token)\n\u001b[1;32m    433\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py:110\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    109\u001b[0m \u001b[39mif\u001b[39;00m arg_name \u001b[39min\u001b[39;00m [\u001b[39m\"\u001b[39m\u001b[39mrepo_id\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mfrom_id\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mto_id\u001b[39m\u001b[39m\"\u001b[39m]:\n\u001b[0;32m--> 110\u001b[0m     validate_repo_id(arg_value)\n\u001b[1;32m    112\u001b[0m \u001b[39melif\u001b[39;00m arg_name \u001b[39m==\u001b[39m \u001b[39m\"\u001b[39m\u001b[39mtoken\u001b[39m\u001b[39m\"\u001b[39m \u001b[39mand\u001b[39;00m arg_value \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py:164\u001b[0m, in \u001b[0;36mvalidate_repo_id\u001b[0;34m(repo_id)\u001b[0m\n\u001b[1;32m    163\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m REPO_ID_REGEX\u001b[39m.\u001b[39mmatch(repo_id):\n\u001b[0;32m--> 164\u001b[0m     \u001b[39mraise\u001b[39;00m HFValidationError(\n\u001b[1;32m    165\u001b[0m         \u001b[39m\"\u001b[39m\u001b[39mRepo id must use alphanumeric chars or \u001b[39m\u001b[39m'\u001b[39m\u001b[39m-\u001b[39m\u001b[39m'\u001b[39m\u001b[39m, \u001b[39m\u001b[39m'\u001b[39m\u001b[39m_\u001b[39m\u001b[39m'\u001b[39m\u001b[39m, \u001b[39m\u001b[39m'\u001b[39m\u001b[39m.\u001b[39m\u001b[39m'\u001b[39m\u001b[39m, \u001b[39m\u001b[39m'\u001b[39m\u001b[39m--\u001b[39m\u001b[39m'\u001b[39m\u001b[39m and \u001b[39m\u001b[39m'\u001b[39m\u001b[39m..\u001b[39m\u001b[39m'\u001b[39m\u001b[39m are\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    166\u001b[0m         \u001b[39m\"\u001b[39m\u001b[39m forbidden, \u001b[39m\u001b[39m'\u001b[39m\u001b[39m-\u001b[39m\u001b[39m'\u001b[39m\u001b[39m and \u001b[39m\u001b[39m'\u001b[39m\u001b[39m.\u001b[39m\u001b[39m'\u001b[39m\u001b[39m cannot start or end the name, max length is 96:\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    167\u001b[0m         \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m \u001b[39m\u001b[39m'\u001b[39m\u001b[39m{\u001b[39;00mrepo_id\u001b[39m}\u001b[39;00m\u001b[39m'\u001b[39m\u001b[39m.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    168\u001b[0m     )\n\u001b[1;32m    170\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39m--\u001b[39m\u001b[39m\"\u001b[39m \u001b[39min\u001b[39;00m repo_id \u001b[39mor\u001b[39;00m \u001b[39m\"\u001b[39m\u001b[39m..\u001b[39m\u001b[39m\"\u001b[39m \u001b[39min\u001b[39;00m repo_id:\n",
      "\u001b[0;31mHFValidationError\u001b[0m: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: './vi_whisper-small'.",
      "\nDuring handling of the above exception, another exception occurred:\n",
      "\u001b[0;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[36], line 4\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mtransformers\u001b[39;00m \u001b[39mimport\u001b[39;00m pipeline\n\u001b[1;32m      2\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mgradio\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mgr\u001b[39;00m\n\u001b[0;32m----> 4\u001b[0m pipe \u001b[39m=\u001b[39m pipeline(model\u001b[39m=\u001b[39;49m\u001b[39m\"\u001b[39;49m\u001b[39m./vi_whisper-small\u001b[39;49m\u001b[39m\"\u001b[39;49m)  \n\u001b[1;32m      6\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mtranscribe\u001b[39m(audio):\n\u001b[1;32m      7\u001b[0m     text \u001b[39m=\u001b[39m pipe(audio)[\u001b[39m\"\u001b[39m\u001b[39mtext\u001b[39m\u001b[39m\"\u001b[39m]\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/pipelines/__init__.py:726\u001b[0m, in \u001b[0;36mpipeline\u001b[0;34m(task, model, config, tokenizer, feature_extractor, image_processor, framework, revision, use_fast, use_auth_token, device, device_map, torch_dtype, trust_remote_code, model_kwargs, pipeline_class, **kwargs)\u001b[0m\n\u001b[1;32m    721\u001b[0m     \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39misinstance\u001b[39m(model, \u001b[39mstr\u001b[39m):\n\u001b[1;32m    722\u001b[0m         \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\n\u001b[1;32m    723\u001b[0m             \u001b[39m\"\u001b[39m\u001b[39mInferring the task automatically requires to check the hub with a model_id defined as a `str`.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    724\u001b[0m             \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mmodel\u001b[39m}\u001b[39;00m\u001b[39m is not a valid model_id.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    725\u001b[0m         )\n\u001b[0;32m--> 726\u001b[0m     task \u001b[39m=\u001b[39m get_task(model, use_auth_token)\n\u001b[1;32m    728\u001b[0m \u001b[39m# Retrieve the task\u001b[39;00m\n\u001b[1;32m    729\u001b[0m \u001b[39mif\u001b[39;00m task \u001b[39min\u001b[39;00m custom_tasks:\n",
      "File \u001b[0;32m~/miniconda3/envs/DUY/lib/python3.9/site-packages/transformers/pipelines/__init__.py:434\u001b[0m, in \u001b[0;36mget_task\u001b[0;34m(model, use_auth_token)\u001b[0m\n\u001b[1;32m    432\u001b[0m     info \u001b[39m=\u001b[39m model_info(model, token\u001b[39m=\u001b[39muse_auth_token)\n\u001b[1;32m    433\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m \u001b[39mas\u001b[39;00m e:\n\u001b[0;32m--> 434\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mInstantiating a pipeline without a task set raised an error: \u001b[39m\u001b[39m{\u001b[39;00me\u001b[39m}\u001b[39;00m\u001b[39m\"\u001b[39m)\n\u001b[1;32m    435\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m info\u001b[39m.\u001b[39mpipeline_tag:\n\u001b[1;32m    436\u001b[0m     \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\n\u001b[1;32m    437\u001b[0m         \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mThe model \u001b[39m\u001b[39m{\u001b[39;00mmodel\u001b[39m}\u001b[39;00m\u001b[39m does not seem to have a correct `pipeline_tag` set to infer the task automatically\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m    438\u001b[0m     )\n",
      "\u001b[0;31mRuntimeError\u001b[0m: Instantiating a pipeline without a task set raised an error: Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are forbidden, '-' and '.' cannot start or end the name, max length is 96: './vi_whisper-small'."
     ]
    }
   ],
   "source": [
    "from transformers import pipeline\n",
    "import gradio as gr\n",
    "\n",
    "pipe = pipeline(model=\"./vi_whisper-small\")  \n",
    "\n",
    "def transcribe(audio):\n",
    "    text = pipe(audio)[\"text\"]\n",
    "    return text\n",
    "\n",
    "iface = gr.Interface(\n",
    "    fn=transcribe,\n",
    "    inputs=gr.Audio(source=\"upload\", type=\"filepath\"),\n",
    "    outputs=\"text\",\n",
    "    title=\"Whisper Base Vietnamese\",\n",
    "    description=\"Realtime demo for Vietnamese speech recognition using a fine-tuned Whisper base model.\",\n",
    ")\n",
    "\n",
    "iface.launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "DUY",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.17"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}