import argparse import functools import os from transformers import WhisperForConditionalGeneration, WhisperFeatureExtractor, WhisperTokenizerFast,\ WhisperProcessor from peft import PeftModel, PeftConfig from utils.utils import print_arguments, add_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg("lora_model", type=str, default="output/whisper-tiny/checkpoint-best/", help="微调保存的模型路径") add_arg('output_dir', type=str, default='models/', help="合并模型的保存目录") add_arg("local_files_only", type=bool, default=False, help="是否只在本地加载模型,不尝试下载") args = parser.parse_args() print_arguments(args) assert os.path.exists(args.lora_model), f"模型文件{args.lora_model}不存在" peft_config = PeftConfig.from_pretrained(args.lora_model) # base_model = WhisperForConditionalGeneration.from_pretrained(peft_config.base_model_name_or_path, device_map={"": "cpu"}, local_files_only=args.local_files_only) model = PeftModel.from_pretrained(base_model, args.lora_model, local_files_only=args.local_files_only) feature_extractor = WhisperFeatureExtractor.from_pretrained(peft_config.base_model_name_or_path, local_files_only=args.local_files_only) tokenizer = WhisperTokenizerFast.from_pretrained(peft_config.base_model_name_or_path, local_files_only=args.local_files_only) processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, local_files_only=args.local_files_only) model = model.merge_and_unload() model.train(False) save_directory = os.path.join(args.output_dir, f'{os.path.basename(peft_config.base_model_name_or_path)}-finetune') os.makedirs(save_directory, exist_ok=True) model.save_pretrained(save_directory) feature_extractor.save_pretrained(save_directory) tokenizer.save_pretrained(save_directory) processor.save_pretrained(save_directory) print(f'合并模型保持在:{save_directory}')