--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: vi_whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Vivos + Commonvoice type: vivos config: None split: None metrics: - name: Wer type: wer value: 21.8855 --- # vi_whisper-small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2894 - Wer: 21.8855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data In training phase i used VIVOS dataset and cleaned CommonVoice The VIVOS evaluation dataset was used ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 8000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.249 | 1.1 | 1000 | 0.3766 | 32.1678 | | 0.1416 | 2.2 | 2000 | 0.2881 | 46.4646 | | 0.0839 | 3.3 | 3000 | 0.2799 | 22.7791 | | 0.0546 | 4.41 | 4000 | 0.2894 | 21.8855 | | 0.0256 | 5.51 | 5000 | 0.3023 | 32.2973 | | 0.0111 | 6.61 | 6000 | 0.3061 | 31.0153 | | 0.0028 | 7.71 | 7000 | 0.3143 | 27.1691 | | 0.0014 | 8.81 | 8000 | 0.3187 | 27.3634 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3