--- tags: - generated_from_trainer metrics: - wer - cer model-index: - name: wav2vec2-large-asr-th-2 results: [] datasets: - common_voice - mozilla-foundation/common_voice_10_0 language: - th pipeline_tag: automatic-speech-recognition library_name: transformers --- # wav2vec2-large-asr-th-2 This model was find-tune from on the CommonVoice dataset. It achieves the following results on the evaluation set: - Loss: 0.2310 - Wer: 32.99% - Cer: 3.75% ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.065 | 0.18 | 1000 | 0.5433 | 0.3259 | 0.0891 | | 0.0792 | 0.36 | 2000 | 0.5453 | 0.3269 | 0.0901 | | 0.1663 | 0.53 | 3000 | 0.4702 | 0.3299 | 0.0908 | | 0.7971 | 0.71 | 4000 | 0.2513 | 0.3244 | 0.0889 | | 0.7588 | 0.89 | 5000 | 0.2310 | 0.3196 | 0.0878 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3