File size: 18,045 Bytes
e551dda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import argparse
import copy
import json
import os
import random
import time
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy
import torch
import torch.nn.functional as F
import torch.optim as optim
from matplotlib import cm
from sklearn.metrics import (auc, explained_variance_score, f1_score,
mean_absolute_error, mean_squared_error,
precision_score, r2_score, recall_score,
roc_auc_score, roc_curve)
from torch.nn.functional import softmax
from torch_geometric.utils import subgraph
torch.autograd.set_detect_anomaly(True)
import math
import pickle
import time
from datetime import date, datetime, timedelta
import torch.nn as nn
import torch_geometric
import torchvision.datasets
import torchvision.models
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from torch_geometric.nn import GIN, MLP, GATConv
from torch_geometric.nn.pool import global_add_pool, global_mean_pool
from torch_geometric.utils import add_self_loops
import dataset
import model_new
import util
from dataset import label_mapping, reverse_label_mapping
from model_new import Smodel
blue = lambda x: '\033[94m' + x + '\033[0m'
red = lambda x: '\033[31m' + x + '\033[0m'
green = lambda x: '\033[32m' + x + '\033[0m'
yellow = lambda x: '\033[33m' + x + '\033[0m'
greenline = lambda x: '\033[42m' + x + '\033[0m'
yellowline = lambda x: '\033[43m' + x + '\033[0m'
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model',default="our", type=str)
parser.add_argument('--train_batch', default=64, type=int)
parser.add_argument('--test_batch', default=128, type=int)
parser.add_argument('--share', type=str, default="0")
parser.add_argument('--edge_rep', type=str, default="True")
parser.add_argument('--batchnorm', type=str, default="True")
parser.add_argument('--extent_norm', type=str, default="T")
parser.add_argument('--spanning_tree', type=str, default="T")
parser.add_argument('--loss_coef', default=0.1, type=float)
parser.add_argument('--h_ch', default=512, type=int)
parser.add_argument('--localdepth', type=int, default=1)
parser.add_argument('--num_interactions', type=int, default=4)
parser.add_argument('--finaldepth', type=int, default=4)
parser.add_argument('--classifier_depth', type=int, default=4)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--dataset', type=str, default='mnist')
parser.add_argument('--log', type=str, default="True")
parser.add_argument('--test_per_round', type=int, default=10)
parser.add_argument('--patience', type=int, default=30) #scheduler
parser.add_argument('--nepoch', type=int, default=301)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--manualSeed', type=str, default="False")
parser.add_argument('--man_seed', type=int, default=12345)
args = parser.parse_args()
args.log=True if args.log=="True" else False
args.edge_rep=True if args.edge_rep=="True" else False
args.batchnorm=True if args.batchnorm=="True" else False
args.save_dir=os.path.join('./save/',args.dataset,args.model)
args.manualSeed=True if args.manualSeed=="True" else False
return args
args = get_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
criterion=nn.CrossEntropyLoss()
if args.dataset in ["mnist"]:
x_out=90
args.data_dir='data/multi_mnist_with_index.pkl'
elif args.dataset in ["mnist_sparse"]:
x_out=90
args.data_dir='data/multi_mnist_sparse.pkl'
elif args.dataset in ["building"]:
x_out=100
args.data_dir='data/building_with_index.pkl'
elif args.dataset in ["mbuilding"]:
x_out=100
args.data_dir='data/mp_building.pkl'
elif args.dataset in ["sbuilding"]:
x_out=10
args.data_dir='data/single_building.pkl'
elif args.dataset in ["smnist"]:
x_out=10
args.data_dir='data/single_mnist.pkl'
elif args.dataset in ["dbp"]:
x_out=2
args.data_dir='data/triple_building_600.pkl'
if args.model=="our":
model=Smodel(h_channel=args.h_ch,input_featuresize=args.h_ch,\
localdepth=args.localdepth,num_interactions=args.num_interactions,finaldepth=args.finaldepth,share=args.share,batchnorm=args.batchnorm)
mlpmodel=MLP(in_channels=args.h_ch*args.num_interactions, hidden_channels=args.h_ch,out_channels=x_out, num_layers=args.classifier_depth,dropout=args.dropout)
elif args.model=="HGT":
model=model_new.HGT(hidden_channels=args.h_ch, out_channels=args.h_ch, num_heads=2, num_layers=args.num_interactions)
mlpmodel=MLP(in_channels=args.h_ch, hidden_channels=args.h_ch,out_channels=x_out, num_layers=args.classifier_depth,dropout=args.dropout)
elif args.model=="HAN":
model=model_new.HAN(hidden_channels=args.h_ch, out_channels=args.h_ch, num_heads=2, num_layers=args.num_interactions)
mlpmodel=MLP(in_channels=args.h_ch, hidden_channels=args.h_ch,out_channels=x_out, num_layers=args.classifier_depth,dropout=args.dropout)
model.to(device), mlpmodel.to(device)
opt_list=list(model.parameters())+list(mlpmodel.parameters())
optimizer = torch.optim.Adam( opt_list, lr=args.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.1, patience=args.patience, min_lr=1e-8)
def contrastive_loss(embeddings,labels,margin):
positive_mask = labels.view(-1, 1) == labels.view(1, -1)
negative_mask = ~positive_mask
# Calculate the number of positive and negative pairs
num_positive_pairs = positive_mask.sum() - labels.shape[0]
num_negative_pairs = negative_mask.sum()
# If there are no negative pairs, return a placeholder loss
if num_negative_pairs==0 or num_positive_pairs== 0:
print("all pos or neg")
return torch.tensor(0, dtype=torch.float)
# Calculate the pairwise Euclidean distances between embeddings
distances = torch.cdist(embeddings, embeddings)/np.sqrt(embeddings.shape[1])
if num_positive_pairs>num_negative_pairs:
# Sample an equal number of + pairs
positive_indices = torch.nonzero(positive_mask)
random_positive_indices = torch.randperm(len(positive_indices))[:num_negative_pairs]
selected_positive_indices = positive_indices[random_positive_indices]
# Select corresponding negative pairs
negative_mask.fill_diagonal_(False)
negative_distances = distances[negative_mask].view(-1, 1)
positive_distances = distances[selected_positive_indices[:,0],selected_positive_indices[:,1]].view(-1, 1)
else: # case for most datasets
# Sample an equal number of - pairs
negative_indices = torch.nonzero(negative_mask)
random_negative_indices = torch.randperm(len(negative_indices))[:num_positive_pairs]
selected_negative_indices = negative_indices[random_negative_indices]
# Select corresponding positive pairs
positive_mask.fill_diagonal_(False)
positive_distances = distances[positive_mask].view(-1, 1)
negative_distances = distances[selected_negative_indices[:,0],selected_negative_indices[:,1]].view(-1, 1)
# Calculate the loss for positive and negative pairs
loss = (positive_distances - negative_distances + margin).clamp(min=0).mean()
return loss
def forward_HGT(data,model,mlpmodel):
data = data.to(device)
x,batch=data.pos, data['vertices'].batch
data["vertices"]['x']=data.pos
label=data.y.long().view(-1)
optimizer.zero_grad()
output=model(data.x_dict, data.edge_index_dict)
if args.dataset in ["dbp"]:
graph_embeddings=global_add_pool(output,batch)
else:
graph_embeddings=global_add_pool(output,batch)
graph_embeddings.clamp_(max=1e6)
c_loss=contrastive_loss(graph_embeddings,label,margin=1)
output=mlpmodel(graph_embeddings)
# log_probs = F.log_softmax(output, dim=1)
loss = criterion(output, label)
loss+=c_loss*args.loss_coef
return loss,c_loss*args.loss_coef,output,label
def forward(data,model,mlpmodel):
data = data.to(device)
edge_index1=data['vertices', 'inside', 'vertices']['edge_index']
edge_index2=data['vertices', 'apart', 'vertices']['edge_index']
combined_edge_index=torch.cat([data['vertices', 'inside', 'vertices']['edge_index'],data['vertices', 'apart', 'vertices']['edge_index']],1)
num_edge_inside=edge_index1.shape[1]
if args.spanning_tree == 'T':
edge_weight=torch.rand(combined_edge_index.shape[1]) + 1
undirected_spanning_edge = util.build_spanning_tree_edge(combined_edge_index, edge_weight,num_nodes=data.pos.shape[0])
edge_set_1 = set(map(tuple, edge_index2.t().tolist()))
edge_set_2 = set(map(tuple, undirected_spanning_edge.t().tolist()))
common_edges = edge_set_1.intersection(edge_set_2)
common_edges_tensor = torch.tensor(list(common_edges), dtype=torch.long).t().to(device)
spanning_edge=torch.cat([edge_index1,common_edges_tensor],1)
combined_edge_index=spanning_edge
x,batch=data.pos, data['vertices'].batch
label=data.y.long().view(-1)
num_nodes=x.shape[0]
edge_index_2rd, num_triplets_real, edx_jk, edx_ij = util.triplets(combined_edge_index, num_nodes)
optimizer.zero_grad()
input_feature=torch.zeros([x.shape[0],args.h_ch],device=device)
output=model(input_feature,x,[edge_index1,edge_index2], edge_index_2rd,edx_jk, edx_ij,batch,num_edge_inside,args.edge_rep)
output=torch.cat(output,dim=1)
if args.dataset in ["dbp"]:
graph_embeddings=global_add_pool(output,batch)
else:
graph_embeddings=global_add_pool(output,batch)
graph_embeddings.clamp_(max=1e6)
c_loss=contrastive_loss(graph_embeddings,label,margin=1)
output=mlpmodel(graph_embeddings)
loss = criterion(output, label)
loss+=c_loss*args.loss_coef
return loss,c_loss*args.loss_coef,output,label
def train(train_Loader,model,mlpmodel ):
epochloss=0
epochcloss=0
y_hat, y_true,y_hat_logit = [], [], []
optimizer.zero_grad()
model.train()
mlpmodel.train()
for i,data in enumerate(train_Loader):
if args.model=="our":
loss,c_loss,output,label =forward(data,model,mlpmodel)
elif args.model in ["HGT","HAN"]:
loss,c_loss,output,label =forward_HGT(data,model,mlpmodel)
loss.backward()
optimizer.step()
epochloss+=loss.detach().cpu()
epochcloss+=c_loss.detach().cpu()
_, pred = output.topk(1, dim=1, largest=True, sorted=True)
pred,label,output=pred.cpu(),label.cpu(),output.cpu()
y_hat += list(pred.detach().numpy().reshape(-1))
y_true += list(label.detach().numpy().reshape(-1))
y_hat_logit+=list(output.detach().numpy())
return epochloss.item()/len(train_Loader),epochcloss.item()/len(train_Loader),y_hat, y_true,y_hat_logit
def test(loader,model,mlpmodel ):
y_hat, y_true,y_hat_logit = [], [], []
loss_total, pred_num = 0, 0
model.eval()
mlpmodel.eval()
with torch.no_grad():
for data in loader:
if args.model=="our":
loss,c_loss,output,label =forward(data,model,mlpmodel)
elif args.model in ["HGT","HAN"]:
loss,c_loss,output,label =forward_HGT(data,model,mlpmodel)
_, pred = output.topk(1, dim=1, largest=True, sorted=True)
pred,label,output=pred.cpu(),label.cpu(),output.cpu()
y_hat += list(pred.detach().numpy().reshape(-1))
y_true += list(label.detach().numpy().reshape(-1))
y_hat_logit+=list(output.detach().numpy())
pred_num += len(label.reshape(-1, 1))
loss_total += loss.detach() * len(label.reshape(-1, 1))
return loss_total/pred_num,y_hat, y_true, y_hat_logit
def main(args,train_Loader,val_Loader,test_Loader):
best_val_trigger = -1
old_lr=1e3
suffix="{}{}-{}:{}:{}".format(datetime.now().strftime("%h"),
datetime.now().strftime("%d"),
datetime.now().strftime("%H"),
datetime.now().strftime("%M"),
datetime.now().strftime("%S"))
if args.log: writer = SummaryWriter(os.path.join(tensorboard_dir,suffix))
for epoch in range(args.nepoch):
train_loss,train_closs,y_hat, y_true,y_hat_logit=train(train_Loader,model,mlpmodel )
train_acc=util.calculate(y_hat,y_true,y_hat_logit)
try:util.record({"loss":train_loss,"closs":train_closs,"acc":train_acc},epoch,writer,"Train")
except: pass
util.print_1(epoch,'Train',{"loss":train_loss,"closs":train_closs,"acc":train_acc})
if epoch % args.test_per_round == 0:
val_loss, yhat_val, ytrue_val, yhatlogit_val = test(val_Loader,model,mlpmodel )
test_loss, yhat_test, ytrue_test, yhatlogit_test = test(test_Loader,model,mlpmodel )
val_acc=util.calculate(yhat_val,ytrue_val,yhatlogit_val)
try:util.record({"loss":val_loss,"acc":val_acc},epoch,writer,"Val")
except: pass
util.print_1(epoch,'Val',{"loss":val_loss,"acc":val_acc},color=blue)
test_acc=util.calculate(yhat_test,ytrue_test,yhatlogit_test)
try:util.record({"loss":test_loss,"acc":test_acc},epoch,writer,"Test")
except: pass
util.print_1(epoch,'Test',{"loss":test_loss,"acc":test_acc},color=blue)
val_trigger=val_acc
if val_trigger > best_val_trigger:
best_val_trigger = val_trigger
best_model = copy.deepcopy(model)
best_mlpmodel=copy.deepcopy(mlpmodel)
best_info=[epoch,val_trigger]
"""
update lr when epoch≥30
"""
if epoch >= 30:
lr = scheduler.optimizer.param_groups[0]['lr']
if old_lr!=lr:
print(red('lr'), epoch, (lr), sep=', ')
old_lr=lr
scheduler.step(val_trigger)
"""
use best model to get best model result
"""
val_loss, yhat_val, ytrue_val, yhat_logit_val = test(val_Loader,best_model,best_mlpmodel)
test_loss, yhat_test, ytrue_test, yhat_logit_test= test(test_Loader,best_model,best_mlpmodel)
val_acc=util.calculate(yhat_val,ytrue_val,yhat_logit_val)
util.print_1(best_info[0],'BestVal',{"loss":val_loss,"acc":val_acc},color=blue)
test_acc=util.calculate(yhat_test,ytrue_test,yhat_logit_test)
util.print_1(best_info[0],'BestTest',{"loss":test_loss,"acc":test_acc},color=blue)
if args.model=="our":print(best_model.att)
"""
save training info and best result
"""
result_file=os.path.join(info_dir, suffix)
with open(result_file, 'w') as f:
print("Random Seed: ", Seed,file=f)
print(f"acc val : {val_acc:.3f}, Test : {test_acc:.3f}", file=f)
print(f"Best info: {best_info}", file=f)
for i in [[a,getattr(args, a)] for a in args.__dict__]:
print(i,sep='\n',file=f)
to_save_dict={'model':best_model.state_dict(),'mlpmodel':best_mlpmodel.state_dict(),'args':args,'labels':ytrue_test,'yhat':yhat_test,'yhat_logit':yhat_logit_test}
torch.save(to_save_dict, os.path.join(model_dir,suffix+'.pth') )
print("done")
if __name__ == '__main__':
"""
build dir
"""
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir,exist_ok=True)
tensorboard_dir=os.path.join(args.save_dir,'log')
if not os.path.exists(tensorboard_dir):
os.makedirs(tensorboard_dir,exist_ok=True)
model_dir=os.path.join(args.save_dir,'model')
if not os.path.exists(model_dir):
os.makedirs(model_dir,exist_ok=True)
info_dir=os.path.join(args.save_dir,'info')
if not os.path.exists(info_dir):
os.makedirs(info_dir,exist_ok=True)
Seed = 0
test_ratio=0.2
print("data splitting Random Seed: ", Seed)
if args.dataset in ['mnist',"mnist_sparse"]:
train_ds,val_ds,test_ds=dataset.get_mnist_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ['building']:
train_ds,val_ds,test_ds=dataset.get_building_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ['mbuilding']:
train_ds,val_ds,test_ds=dataset.get_mbuilding_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ['sbuilding']:
train_ds,val_ds,test_ds=dataset.get_sbuilding_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ['smnist']:
train_ds,val_ds,test_ds=dataset.get_smnist_dataset(args.data_dir,Seed,test_ratio=test_ratio)
elif args.dataset in ['dbp']:
train_ds,val_ds,test_ds=dataset.get_dbp_dataset(args.data_dir,Seed,test_ratio=test_ratio)
if args.extent_norm=="T":
train_ds= dataset.affine_transform_to_range(train_ds,target_range=(-1, 1))
val_ds= dataset.affine_transform_to_range(val_ds,target_range=(-1, 1))
test_ds= dataset.affine_transform_to_range(test_ds,target_range=(-1, 1))
train_loader = torch_geometric.loader.DataLoader(train_ds,batch_size=args.train_batch, shuffle=False,pin_memory=True,drop_last=True)
val_loader = torch_geometric.loader.DataLoader(val_ds, batch_size=args.test_batch, shuffle=False, pin_memory=True)
test_loader = torch_geometric.loader.DataLoader(test_ds,batch_size=args.test_batch, shuffle=False,pin_memory=True)
"""
set model seed
"""
Seed = args.man_seed if args.manualSeed else random.randint(1, 10000)
Seed=3407
print("Random Seed: ", Seed)
print(args)
random.seed(Seed)
torch.manual_seed(Seed)
np.random.seed(Seed)
main(args,train_loader,val_loader,test_loader)
|