EMaghakyan
commited on
Commit
•
98660fb
1
Parent(s):
bb750d5
add custom handler
Browse files- __pycache__/handler.cpython-39.pyc +0 -0
- handler.py +29 -0
- requirements.txt +1 -0
- test_handler.py +22 -0
__pycache__/handler.cpython-39.pyc
ADDED
Binary file (1.52 kB). View file
|
|
handler.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import CLIPModel, AutoProcessor, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
|
7 |
+
|
8 |
+
class EndpointHandler:
|
9 |
+
def __init__(self):
|
10 |
+
self.model = CLIPModel.from_pretrained("patrickjohncyh/fashion-clip")
|
11 |
+
self.processor = AutoProcessor.from_pretrained("patrickjohncyh/fashion-clip")
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
13 |
+
|
14 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
15 |
+
parameters = data.pop("parameters", {"mode": "image"})
|
16 |
+
inputs = data.pop("inputs", data)
|
17 |
+
with torch.no_grad():
|
18 |
+
if parameters["mode"] == "text":
|
19 |
+
inputs = self.tokenizer(inputs, padding=True, return_tensors="pt")
|
20 |
+
features = self.model.get_text_features(**inputs)
|
21 |
+
|
22 |
+
if parameters["mode"] == "image":
|
23 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
24 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
25 |
+
|
26 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
27 |
+
features = self.model.get_image_features(**inputs)
|
28 |
+
|
29 |
+
return features[0].tolist()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Pillow
|
test_handler.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from handler import EndpointHandler
|
2 |
+
|
3 |
+
# init handler
|
4 |
+
my_handler = EndpointHandler()
|
5 |
+
|
6 |
+
# prepare sample payload
|
7 |
+
non_holiday_payload = {
|
8 |
+
"inputs": "I am quite excited how this will turn out",
|
9 |
+
"parameters": {"mode": "text"},
|
10 |
+
}
|
11 |
+
|
12 |
+
# test the handler
|
13 |
+
non_holiday_pred = my_handler(non_holiday_payload)
|
14 |
+
print(non_holiday_pred)
|
15 |
+
|
16 |
+
non_holiday_payload = {
|
17 |
+
"inputs": "https://image.momoxfashion.com/Marc-O-Polo-i402d2w-0-detail",
|
18 |
+
"parameters": {"mode": "image"},
|
19 |
+
}
|
20 |
+
|
21 |
+
non_holiday_pred = my_handler(non_holiday_payload)
|
22 |
+
print(non_holiday_pred)
|