--- license: apache-2.0 datasets: - imagenet-1k library_name: torchvision pipeline_tag: image-classification tags: - onnx - ENOT-AutoDL --- # ENOT-AutoDL pruning benchmark on ImageNet-1k This repository contains models accelerated with [ENOT-AutoDL](https://pypi.org/project/enot-autodl/) framework. Models from [Torchvision](https://pytorch.org/vision/stable/models.html) are used as a baseline. Evaluation code is also based on Torchvision references. ## ResNet-50 | Model | Latency (MMACs) | Accuracy (%) | |---------------------------|:---------------:|:-------------:| | **ResNet-50 Torchvision** | 4144.85 | 76.14 | | **ResNet-50 ENOT (x2)** | 2057.61 (x2.01) | 75.48 (-0.66) | | **ResNet-50 ENOT (x4)** | 867.94 (x4.77) | 73.58 (-2.57) | ## ViT-B/32 | Model | Latency (MMACs) | Accuracy (%) | |--------------------------|:---------------:|:-------------:| | **ViT-B/32 Torchvision** | 4413.99 | 75.91 | | **ViT-B/32 ENOT (x4.8)** | 911.80 (x4.84) | 75.68 (-0.23) | | **ViT-B/32 ENOT (x9)** | 490.78 (x8.99) | 73.72 (-2.19) | ## MobileNetV2 | Model | Latency (MMACs) | Accuracy (%) | |-----------------------------|:---------------:|:-------------:| | **MobileNetV2 Torchvision** | 334.23 | 71.88 | | **MobileNetV2 ENOT** | 156.80 (x2.13) | 69.90 (-1.98) | # Validation To validate results, follow this steps: 1. Install all required packages: ```bash pip install -r requrements.txt ``` 1. Calculate model latency: ```bash python measure_mac.py --model-ckpt path/to/model.pth ``` 1. Measure accuracy of ONNX model: ```bash python test.py --data-path path/to/imagenet --model-onnx path/to/model.onnx --batch-size 1 ``` 1. Measure accuracy of PyTorch (.pth) model: ```bash python test.py --data-path path/to/imagenet --model-ckpt path/to/model.pth ``` If you want to book a demo, please contact us: enot@enot.ai .