File size: 1,805 Bytes
04a0be3
e7f5760
04a0be3
e7f5760
 
 
 
 
04a0be3
e7f5760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
language: en
license: apache-2.0
datasets:
- ESGBERT/social_2k
tags:
- ESG
- social
---

# Model Card for SocDistilRoBERTa-social

## Model Description

Based on [this paper](https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4622514), this is the SocDistilRoBERTa-social language model. A language model that is trained to better classify social texts in the ESG domain.

Using the [SocDistilRoBERTa-base](https://huggingface.co/ESGBERT/SocDistilRoBERTa-base) model as a starting point, the SocDistilRoBERTa-social Language Model is additionally fine-trained on a 2k social dataset to detect social text samples.

## How to Get Started With the Model
You can use the model with a pipeline for text classification:

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline

tokenizer_name = "ESGBERT/SocDistilRoBERTa-social"
model_name = "ESGBERT/SocDistilRoBERTa-social"
 
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, max_len=512)
 
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) # set device=0 to use GPU
 
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
print(pipe("We follow rigorous supplier checks to prevent slavery and ensure workers' rights."))
```

## More details can be found in the paper

```bibtex
@article{Schimanski23ESGBERT,
    title={{Bridiging the Gap in ESG Measurement: Using NLP to Quantify Environmental, Social, and Governance Communication}},
    author={Tobias Schimanski and Andrin Reding and Nico Reding and Julia Bingler and Mathias Kraus and Markus Leippold},
    year={2023},
    journal={Available on SSRN: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4622514},
}
```