File size: 16,773 Bytes
bbcc985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import torch

##
# Code from huggingface/twodgirl
# License: apache-2.0
#
# Reverse of the script from
# https://github.com/huggingface/diffusers/blob/main/scripts/convert_flux_to_diffusers.py

def swap_scale_shift(weight):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)

    return new_weight

def convert_diffusers_to_flux_checkpoint(
    converted_state_dict,
    num_layers=19,
    num_single_layers=38,
    inner_dim=3072,
    mlp_ratio=4.0
):
    """
    84c3df90-9df5-48c2-9fa0-1e81324e61bf

    Reverses the conversion from Diffusers checkpoint to  Flux Transformer format.

    This function takes a state dictionary that has been converted to the Diffusers format
    and transforms it back to the original Flux Transformer checkpoint format. It systematically
    maps each parameter from the Diffusers naming and structure back to the original format,
    handling different components such as embeddings, transformer blocks, and normalization layers.

    Args:
        converted_state_dict (dict): The state dictionary in Diffusers format to be converted back.
        num_layers (int, optional): Number of transformer layers in the original model. Default is 19.
        num_single_layers (int, optional): Number of single transformer layers. Default is 38.
        inner_dim (int, optional): The inner dimension size for MLP layers. Default is 3072.
        mlp_ratio (float, optional): The ratio to compute the MLP hidden dimension. Default is 4.0.

    Returns:
        dict: The original state dictionary in Flux Transformer checkpoint format.
    """
    # Initialize an empty dictionary to store the original state dictionary.
    original_state_dict = {}

    # -------------------------
    # Handle Time Text Embeddings
    # -------------------------

    # Map the timestep embedder weights and biases back to "time_in.in_layer"
    original_state_dict["time_in.in_layer.weight"] = converted_state_dict.pop(
        "time_text_embed.timestep_embedder.linear_1.weight"
    )
    original_state_dict["time_in.in_layer.bias"] = converted_state_dict.pop(
        "time_text_embed.timestep_embedder.linear_1.bias"
    )
    original_state_dict["time_in.out_layer.weight"] = converted_state_dict.pop(
        "time_text_embed.timestep_embedder.linear_2.weight"
    )
    original_state_dict["time_in.out_layer.bias"] = converted_state_dict.pop(
        "time_text_embed.timestep_embedder.linear_2.bias"
    )

    # Map the text embedder weights and biases back to "vector_in.in_layer"
    original_state_dict["vector_in.in_layer.weight"] = converted_state_dict.pop(
        "time_text_embed.text_embedder.linear_1.weight"
    )
    original_state_dict["vector_in.in_layer.bias"] = converted_state_dict.pop(
        "time_text_embed.text_embedder.linear_1.bias"
    )
    original_state_dict["vector_in.out_layer.weight"] = converted_state_dict.pop(
        "time_text_embed.text_embedder.linear_2.weight"
    )
    original_state_dict["vector_in.out_layer.bias"] = converted_state_dict.pop(
        "time_text_embed.text_embedder.linear_2.bias"
    )

    # -------------------------
    # Handle Guidance Embeddings (if present)
    # -------------------------

    # Check if any keys related to guidance are present in the converted_state_dict
    has_guidance = any("guidance_embedder" in k for k in converted_state_dict)
    if has_guidance:
        # Map the guidance embedder weights and biases back to "guidance_in.in_layer"
        original_state_dict["guidance_in.in_layer.weight"] = converted_state_dict.pop(
            "time_text_embed.guidance_embedder.linear_1.weight"
        )
        original_state_dict["guidance_in.in_layer.bias"] = converted_state_dict.pop(
            "time_text_embed.guidance_embedder.linear_1.bias"
        )
        original_state_dict["guidance_in.out_layer.weight"] = converted_state_dict.pop(
            "time_text_embed.guidance_embedder.linear_2.weight"
        )
        original_state_dict["guidance_in.out_layer.bias"] = converted_state_dict.pop(
            "time_text_embed.guidance_embedder.linear_2.bias"
        )

    # -------------------------
    # Handle Context and Image Embeddings
    # -------------------------

    # Map the context embedder weights and biases back to "txt_in"
    original_state_dict["txt_in.weight"] = converted_state_dict.pop("context_embedder.weight")
    original_state_dict["txt_in.bias"] = converted_state_dict.pop("context_embedder.bias")

    # Map the image embedder weights and biases back to "img_in"
    original_state_dict["img_in.weight"] = converted_state_dict.pop("x_embedder.weight")
    original_state_dict["img_in.bias"] = converted_state_dict.pop("x_embedder.bias")

    # -------------------------
    # Handle Transformer Blocks
    # -------------------------

    for i in range(num_layers):
        # Define the prefix for the current transformer block in the converted_state_dict
        block_prefix = f"transformer_blocks.{i}."

        # -------------------------
        # Map Norm1 Layers
        # -------------------------

        # Map the norm1 linear layer weights and biases back to "double_blocks.{i}.img_mod.lin"
        original_state_dict[f"double_blocks.{i}.img_mod.lin.weight"] = converted_state_dict.pop(
            f"{block_prefix}norm1.linear.weight"
        )
        original_state_dict[f"double_blocks.{i}.img_mod.lin.bias"] = converted_state_dict.pop(
            f"{block_prefix}norm1.linear.bias"
        )

        # Map the norm1_context linear layer weights and biases back to "double_blocks.{i}.txt_mod.lin"
        original_state_dict[f"double_blocks.{i}.txt_mod.lin.weight"] = converted_state_dict.pop(
            f"{block_prefix}norm1_context.linear.weight"
        )
        original_state_dict[f"double_blocks.{i}.txt_mod.lin.bias"] = converted_state_dict.pop(
            f"{block_prefix}norm1_context.linear.bias"
        )

        # -------------------------
        # Handle Q, K, V Projections for Image Attention
        # -------------------------

        # Retrieve and combine the Q, K, V weights for image attention
        q_weight = converted_state_dict.pop(f"{block_prefix}attn.to_q.weight")
        k_weight = converted_state_dict.pop(f"{block_prefix}attn.to_k.weight")
        v_weight = converted_state_dict.pop(f"{block_prefix}attn.to_v.weight")
        # Concatenate along the first dimension to form the combined QKV weight
        original_state_dict[f"double_blocks.{i}.img_attn.qkv.weight"] = torch.cat([q_weight, k_weight, v_weight], dim=0)

        # Retrieve and combine the Q, K, V biases for image attention
        q_bias = converted_state_dict.pop(f"{block_prefix}attn.to_q.bias")
        k_bias = converted_state_dict.pop(f"{block_prefix}attn.to_k.bias")
        v_bias = converted_state_dict.pop(f"{block_prefix}attn.to_v.bias")
        # Concatenate along the first dimension to form the combined QKV bias
        original_state_dict[f"double_blocks.{i}.img_attn.qkv.bias"] = torch.cat([q_bias, k_bias, v_bias], dim=0)

        # -------------------------
        # Handle Q, K, V Projections for Text Attention
        # -------------------------

        # Retrieve and combine the additional Q, K, V projections for context (text) attention
        add_q_weight = converted_state_dict.pop(f"{block_prefix}attn.add_q_proj.weight")
        add_k_weight = converted_state_dict.pop(f"{block_prefix}attn.add_k_proj.weight")
        add_v_weight = converted_state_dict.pop(f"{block_prefix}attn.add_v_proj.weight")
        # Concatenate along the first dimension to form the combined QKV weight for text
        original_state_dict[f"double_blocks.{i}.txt_attn.qkv.weight"] = torch.cat([add_q_weight, add_k_weight, add_v_weight], dim=0)

        add_q_bias = converted_state_dict.pop(f"{block_prefix}attn.add_q_proj.bias")
        add_k_bias = converted_state_dict.pop(f"{block_prefix}attn.add_k_proj.bias")
        add_v_bias = converted_state_dict.pop(f"{block_prefix}attn.add_v_proj.bias")
        # Concatenate along the first dimension to form the combined QKV bias for text
        original_state_dict[f"double_blocks.{i}.txt_attn.qkv.bias"] = torch.cat([add_q_bias, add_k_bias, add_v_bias], dim=0)

        # -------------------------
        # Map Attention Norm Layers
        # -------------------------

        # Map the attention query norm weights back to "double_blocks.{i}.img_attn.norm.query_norm.scale"
        original_state_dict[f"double_blocks.{i}.img_attn.norm.query_norm.scale"] = converted_state_dict.pop(
            f"{block_prefix}attn.norm_q.weight"
        )

        # Map the attention key norm weights back to "double_blocks.{i}.img_attn.norm.key_norm.scale"
        original_state_dict[f"double_blocks.{i}.img_attn.norm.key_norm.scale"] = converted_state_dict.pop(
            f"{block_prefix}attn.norm_k.weight"
        )

        # Map the added attention query norm weights back to "double_blocks.{i}.txt_attn.norm.query_norm.scale"
        original_state_dict[f"double_blocks.{i}.txt_attn.norm.query_norm.scale"] = converted_state_dict.pop(
            f"{block_prefix}attn.norm_added_q.weight"
        )

        # Map the added attention key norm weights back to "double_blocks.{i}.txt_attn.norm.key_norm.scale"
        original_state_dict[f"double_blocks.{i}.txt_attn.norm.key_norm.scale"] = converted_state_dict.pop(
            f"{block_prefix}attn.norm_added_k.weight"
        )

        # -------------------------
        # Handle Feed-Forward Networks (FFNs) for Image and Text
        # -------------------------

        # Map the image MLP projection layers back to "double_blocks.{i}.img_mlp"
        original_state_dict[f"double_blocks.{i}.img_mlp.0.weight"] = converted_state_dict.pop(
            f"{block_prefix}ff.net.0.proj.weight"
        )
        original_state_dict[f"double_blocks.{i}.img_mlp.0.bias"] = converted_state_dict.pop(
            f"{block_prefix}ff.net.0.proj.bias"
        )
        original_state_dict[f"double_blocks.{i}.img_mlp.2.weight"] = converted_state_dict.pop(
            f"{block_prefix}ff.net.2.weight"
        )
        original_state_dict[f"double_blocks.{i}.img_mlp.2.bias"] = converted_state_dict.pop(
            f"{block_prefix}ff.net.2.bias"
        )

        # Map the text MLP projection layers back to "double_blocks.{i}.txt_mlp"
        original_state_dict[f"double_blocks.{i}.txt_mlp.0.weight"] = converted_state_dict.pop(
            f"{block_prefix}ff_context.net.0.proj.weight"
        )
        original_state_dict[f"double_blocks.{i}.txt_mlp.0.bias"] = converted_state_dict.pop(
            f"{block_prefix}ff_context.net.0.proj.bias"
        )
        original_state_dict[f"double_blocks.{i}.txt_mlp.2.weight"] = converted_state_dict.pop(
            f"{block_prefix}ff_context.net.2.weight"
        )
        original_state_dict[f"double_blocks.{i}.txt_mlp.2.bias"] = converted_state_dict.pop(
            f"{block_prefix}ff_context.net.2.bias"
        )

        # -------------------------
        # Handle Attention Output Projections
        # -------------------------

        # Map the image attention output projection weights and biases back to "double_blocks.{i}.img_attn.proj"
        original_state_dict[f"double_blocks.{i}.img_attn.proj.weight"] = converted_state_dict.pop(
            f"{block_prefix}attn.to_out.0.weight"
        )
        original_state_dict[f"double_blocks.{i}.img_attn.proj.bias"] = converted_state_dict.pop(
            f"{block_prefix}attn.to_out.0.bias"
        )

        # Map the text attention output projection weights and biases back to "double_blocks.{i}.txt_attn.proj"
        original_state_dict[f"double_blocks.{i}.txt_attn.proj.weight"] = converted_state_dict.pop(
            f"{block_prefix}attn.to_add_out.weight"
        )
        original_state_dict[f"double_blocks.{i}.txt_attn.proj.bias"] = converted_state_dict.pop(
            f"{block_prefix}attn.to_add_out.bias"
        )

    # -------------------------
    # Handle Single Transformer Blocks
    # -------------------------

    for i in range(num_single_layers):
        # Define the prefix for the current single transformer block in the converted_state_dict
        block_prefix = f"single_transformer_blocks.{i}."

        # -------------------------
        # Map Norm Layers
        # -------------------------

        # Map the normalization linear layer weights and biases back to "single_blocks.{i}.modulation.lin"
        original_state_dict[f"single_blocks.{i}.modulation.lin.weight"] = converted_state_dict.pop(
            f"{block_prefix}norm.linear.weight"
        )
        original_state_dict[f"single_blocks.{i}.modulation.lin.bias"] = converted_state_dict.pop(
            f"{block_prefix}norm.linear.bias"
        )

        # -------------------------
        # Handle Q, K, V Projections and MLP
        # -------------------------

        # Retrieve the Q, K, V weights and the MLP projection weight
        q_weight = converted_state_dict.pop(f"{block_prefix}attn.to_q.weight")
        k_weight = converted_state_dict.pop(f"{block_prefix}attn.to_k.weight")
        v_weight = converted_state_dict.pop(f"{block_prefix}attn.to_v.weight")
        proj_mlp_weight = converted_state_dict.pop(f"{block_prefix}proj_mlp.weight")

        # Concatenate Q, K, V, and MLP weights to form the combined linear1.weight
        combined_weight = torch.cat([q_weight, k_weight, v_weight, proj_mlp_weight], dim=0)
        original_state_dict[f"single_blocks.{i}.linear1.weight"] = combined_weight

        # Retrieve the Q, K, V biases and the MLP projection bias
        q_bias = converted_state_dict.pop(f"{block_prefix}attn.to_q.bias")
        k_bias = converted_state_dict.pop(f"{block_prefix}attn.to_k.bias")
        v_bias = converted_state_dict.pop(f"{block_prefix}attn.to_v.bias")
        proj_mlp_bias = converted_state_dict.pop(f"{block_prefix}proj_mlp.bias")

        # Concatenate Q, K, V, and MLP biases to form the combined linear1.bias
        combined_bias = torch.cat([q_bias, k_bias, v_bias, proj_mlp_bias], dim=0)
        original_state_dict[f"single_blocks.{i}.linear1.bias"] = combined_bias

        # -------------------------
        # Map Attention Normalization Weights
        # -------------------------

        # Map the attention query norm weights back to "single_blocks.{i}.norm.query_norm.scale"
        original_state_dict[f"single_blocks.{i}.norm.query_norm.scale"] = converted_state_dict.pop(
            f"{block_prefix}attn.norm_q.weight"
        )

        # Map the attention key norm weights back to "single_blocks.{i}.norm.key_norm.scale"
        original_state_dict[f"single_blocks.{i}.norm.key_norm.scale"] = converted_state_dict.pop(
            f"{block_prefix}attn.norm_k.weight"
        )

        # -------------------------
        # Handle Projection Output
        # -------------------------

        # Map the projection output weights and biases back to "single_blocks.{i}.linear2"
        original_state_dict[f"single_blocks.{i}.linear2.weight"] = converted_state_dict.pop(
            f"{block_prefix}proj_out.weight"
        )
        original_state_dict[f"single_blocks.{i}.linear2.bias"] = converted_state_dict.pop(
            f"{block_prefix}proj_out.bias"
        )

    # -------------------------
    # Handle Final Output Projection and Normalization
    # -------------------------

    # Map the final output projection weights and biases back to "final_layer.linear"
    original_state_dict["final_layer.linear.weight"] = converted_state_dict.pop("proj_out.weight")
    original_state_dict["final_layer.linear.bias"] = converted_state_dict.pop("proj_out.bias")

    # Reverse the swap_scale_shift transformation for normalization weights and biases
    original_state_dict["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(
        converted_state_dict.pop("norm_out.linear.weight")
    )
    original_state_dict["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(
        converted_state_dict.pop("norm_out.linear.bias")
    )

    # -------------------------
    # Handle Remaining Parameters (if any)
    # -------------------------

    # It's possible that there are remaining parameters that were not mapped.
    # Depending on your use case, you can handle them here or raise an error.
    if len(converted_state_dict) > 0:
        # For debugging purposes, you might want to log or print the remaining keys
        remaining_keys = list(converted_state_dict.keys())
        print(f"Warning: The following keys were not mapped and remain in the state dict: {remaining_keys}")
        # Optionally, you can choose to include them or exclude them from the original_state_dict

    return original_state_dict