Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +24 -22
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.88 +/- 0.30
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b177815e8007facd339626c150c4798d3d541d5a98970d5d3673e75a25d2272
|
3 |
+
size 109297
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -41,54 +43,54 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[-1.
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
65 |
-
":serialized:": "
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
-
"_current_progress_remaining":
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f393d7cf790>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f393d7c96c0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
+
"num_timesteps": 1001024,
|
47 |
+
"_total_timesteps": 1001000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1676533028566359735,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3t+dv4ArqD8DmoM+VNhzPyHJ1r6HppK/dJaHvwBAgL+QK7y+46qhvjUEMT40iUQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcK+5v6Orqj93zjQ+TJWSP6C6577Mw1q/OSSKv7k3iL87bMG+dQGmvtO9qj5MGks/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADe352/gCuoPwOagz4BRek9OgEku+LLTj5U2HM/IcnWvoemkr9tuoM/fRYsPjODwT90loe/AECAv5ArvL7jnwe+v8tEvpKPLT7jqqG+NQQxPjSJRD+ex7Q8OZ/4PHqY3TyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[-1.2333944 1.3138275 0.2570344 ]\n [ 0.95251966 -0.41950324 -1.145707 ]\n [-1.059279 -1.0019531 -0.36751986]\n [-0.3157569 0.17286761 0.76771855]]",
|
62 |
+
"desired_goal": "[[-1.4506664 1.3333629 0.17656885]\n [ 1.1451812 -0.4525957 -0.8545501 ]\n [-1.0792304 -1.0642005 -0.37777886]\n [-0.32422987 0.3334795 0.79337 ]]",
|
63 |
+
"observation": "[[-1.2333944 1.3138275 0.2570344 0.11390115 -0.00250251 0.20194963]\n [ 0.95251966 -0.41950324 -1.145707 1.0291268 0.16805454 1.5118164 ]\n [-1.059279 -1.0019531 -0.36751986 -0.13244586 -0.19218348 0.16949299]\n [-0.3157569 0.17286761 0.76771855 0.02206784 0.03034936 0.02705025]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6A/5vYVhpr2KKEk+PPFsvT4eeb2nbnM+0P4SPf32+T0wb2w9zCrGPTn7AT4xeSc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.12161237 -0.08124069 0.1964437 ]\n [-0.05784725 -0.06081986 0.2377268 ]\n [ 0.03588754 0.12205312 0.05772322]\n [ 0.09676132 0.1269349 0.16354825]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
+
"_current_progress_remaining": -2.3976023975968985e-05,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICqAYWTLH7b+UhpRSlIwBbJRLMowBdJRHQK0RUt7rs0J1fZQoaAZoCWgPQwjovpzZrlDlv5SGlFKUaBVLMmgWR0CtEQG/etSydX2UKGgGaAloD0MIZJP8iF8x4b+UhpRSlGgVSzJoFkdArRCxEroW6HV9lChoBmgJaA9DCPPn24KlevG/lIaUUpRoFUsyaBZHQK0QYfHPu5V1fZQoaAZoCWgPQwj7JHfYRGbrv5SGlFKUaBVLMmgWR0CtE0mAskIHdX2UKGgGaAloD0MIsOjWa3pQ67+UhpRSlGgVSzJoFkdArRL42/BWP3V9lChoBmgJaA9DCEeum1Jea/m/lIaUUpRoFUsyaBZHQK0SqU4aP0Z1fZQoaAZoCWgPQwjYtiizQSb0v5SGlFKUaBVLMmgWR0CtEltL127ndX2UKGgGaAloD0MIBYwubw7X5L+UhpRSlGgVSzJoFkdArRV+nn+yaHV9lChoBmgJaA9DCMwpATEJ1/q/lIaUUpRoFUsyaBZHQK0VL/c32mJ1fZQoaAZoCWgPQwgqc/ON6J7mv5SGlFKUaBVLMmgWR0CtFOAR02cbdX2UKGgGaAloD0MIQIo6cw8J9L+UhpRSlGgVSzJoFkdArRSR66asqHV9lChoBmgJaA9DCBLYnINnQuS/lIaUUpRoFUsyaBZHQK0XpOtW+491fZQoaAZoCWgPQwjD9L2G4Ljjv5SGlFKUaBVLMmgWR0CtF1R3eN1hdX2UKGgGaAloD0MIIEPHDiox9L+UhpRSlGgVSzJoFkdArRcFIAfdRHV9lChoBmgJaA9DCDl/EwoR8PC/lIaUUpRoFUsyaBZHQK0Wtz/6wdN1fZQoaAZoCWgPQwgqqRPQRNjsv5SGlFKUaBVLMmgWR0CtGcN0vGp/dX2UKGgGaAloD0MI3Zp0WyIXzr+UhpRSlGgVSzJoFkdArRlzYChexHV9lChoBmgJaA9DCFM9mX/0jfa/lIaUUpRoFUsyaBZHQK0ZJA6+36R1fZQoaAZoCWgPQwgNwtzu5T7Vv5SGlFKUaBVLMmgWR0CtGNXVsk6cdX2UKGgGaAloD0MI7RFqhlTR9r+UhpRSlGgVSzJoFkdArRw06BAfMnV9lChoBmgJaA9DCNoaEYyDy/C/lIaUUpRoFUsyaBZHQK0b5KkEcKh1fZQoaAZoCWgPQwhGzVfJx27wv5SGlFKUaBVLMmgWR0CtG5bY9Pk8dX2UKGgGaAloD0MIUu3T8ZgB4r+UhpRSlGgVSzJoFkdArRtJBu4wy3V9lChoBmgJaA9DCH433bJDfOe/lIaUUpRoFUsyaBZHQK0eSh8IAwR1fZQoaAZoCWgPQwh6UiY1tAHEv5SGlFKUaBVLMmgWR0CtHfjW07bMdX2UKGgGaAloD0MIIZOMnIU97b+UhpRSlGgVSzJoFkdArR2oKWszVXV9lChoBmgJaA9DCH1BCwkYXdu/lIaUUpRoFUsyaBZHQK0dWRFI/aB1fZQoaAZoCWgPQwgrTUpBt1f2v5SGlFKUaBVLMmgWR0CtH4kY4yXVdX2UKGgGaAloD0MIYmafxyhP4r+UhpRSlGgVSzJoFkdArR837zkIX3V9lChoBmgJaA9DCFyOVyB60vO/lIaUUpRoFUsyaBZHQK0e5x7zCk51fZQoaAZoCWgPQwhoeLMG76vov5SGlFKUaBVLMmgWR0CtHpg8jiXIdX2UKGgGaAloD0MICi3r/rEQ17+UhpRSlGgVSzJoFkdArSC87CBPK3V9lChoBmgJaA9DCIY5QZscvua/lIaUUpRoFUsyaBZHQK0ga8Zk0791fZQoaAZoCWgPQwg8+fTYlgHsv5SGlFKUaBVLMmgWR0CtIBr6tT1kdX2UKGgGaAloD0MIkDLiAtAo57+UhpRSlGgVSzJoFkdArR/L8BMi8nV9lChoBmgJaA9DCHpvDAHAMe+/lIaUUpRoFUsyaBZHQK0h/lFtsN51fZQoaAZoCWgPQwjdJXFWRE33v5SGlFKUaBVLMmgWR0CtIa0pmVZ+dX2UKGgGaAloD0MI9n04SIjy6b+UhpRSlGgVSzJoFkdArSFcYbbUPXV9lChoBmgJaA9DCNUkeEMaFeq/lIaUUpRoFUsyaBZHQK0hDUnXumd1fZQoaAZoCWgPQwggCft2EhHUv5SGlFKUaBVLMmgWR0CtIzuOsDGMdX2UKGgGaAloD0MIfZV87C5Q8L+UhpRSlGgVSzJoFkdArSLqT+vQnnV9lChoBmgJaA9DCPT91HjpZvS/lIaUUpRoFUsyaBZHQK0ima2nbZh1fZQoaAZoCWgPQwgHJcy0/Wv0v5SGlFKUaBVLMmgWR0CtIkqe9SMtdX2UKGgGaAloD0MIlwFnKVlO67+UhpRSlGgVSzJoFkdArSR/sJIDo3V9lChoBmgJaA9DCKtf6Xx41vi/lIaUUpRoFUsyaBZHQK0kLoi9qUN1fZQoaAZoCWgPQwgQk3Ahj2Dpv5SGlFKUaBVLMmgWR0CtI93yZrpJdX2UKGgGaAloD0MIePLpsS2D9b+UhpRSlGgVSzJoFkdArSOO2kSElHV9lChoBmgJaA9DCOJ30y07ROO/lIaUUpRoFUsyaBZHQK0lvcjZ+QV1fZQoaAZoCWgPQwgm32xzY/rjv5SGlFKUaBVLMmgWR0CtJWypBHCodX2UKGgGaAloD0MIy6Kwi6KH8L+UhpRSlGgVSzJoFkdArSUb+rELpnV9lChoBmgJaA9DCKVo5V5gVuC/lIaUUpRoFUsyaBZHQK0kzMCcPOJ1fZQoaAZoCWgPQwioAYOkT6vsv5SGlFKUaBVLMmgWR0CtJvV9Wp6ydX2UKGgGaAloD0MItqFinL+J5L+UhpRSlGgVSzJoFkdArSakLSeAeHV9lChoBmgJaA9DCGixFMlXguy/lIaUUpRoFUsyaBZHQK0mU1/DtPZ1fZQoaAZoCWgPQwg51sVtNAD5v5SGlFKUaBVLMmgWR0CtJgRYJVsDdX2UKGgGaAloD0MIoZ+p1y0C7r+UhpRSlGgVSzJoFkdArShlCHARCnV9lChoBmgJaA9DCPVjk/yI3+K/lIaUUpRoFUsyaBZHQK0oE7W/ag51fZQoaAZoCWgPQwggf2lRn6Tzv5SGlFKUaBVLMmgWR0CtJ8QLE1l5dX2UKGgGaAloD0MIE9Iag06I5L+UhpRSlGgVSzJoFkdArSd0+otL+XV9lChoBmgJaA9DCFd2weCau/K/lIaUUpRoFUsyaBZHQK0pqGnn+yZ1fZQoaAZoCWgPQwhkB5W4jrHwv5SGlFKUaBVLMmgWR0CtKVcyN4qxdX2UKGgGaAloD0MIBDi9i/fj6r+UhpRSlGgVSzJoFkdArSkGVeKKpHV9lChoBmgJaA9DCFbSim8ofPi/lIaUUpRoFUsyaBZHQK0ot0HyEtd1fZQoaAZoCWgPQwjEW+ffLnvxv5SGlFKUaBVLMmgWR0CtK1E1/DtPdX2UKGgGaAloD0MIw0maP6a16b+UhpRSlGgVSzJoFkdArSr/6wdKd3V9lChoBmgJaA9DCNXsgVZgSO+/lIaUUpRoFUsyaBZHQK0qsHoouwp1fZQoaAZoCWgPQwieJcgIqHDuv5SGlFKUaBVLMmgWR0CtKmGJFb3XdX2UKGgGaAloD0MIVAJiEi7k4L+UhpRSlGgVSzJoFkdArSyCvX9R8HV9lChoBmgJaA9DCHC044bfTe2/lIaUUpRoFUsyaBZHQK0sMXUH6dl1fZQoaAZoCWgPQwjTn/1IEZnqv5SGlFKUaBVLMmgWR0CtK+CWE9McdX2UKGgGaAloD0MItd/aiZKQ6L+UhpRSlGgVSzJoFkdArSuRoAXEZXV9lChoBmgJaA9DCFn8prBSQeG/lIaUUpRoFUsyaBZHQK0twZ5zHS51fZQoaAZoCWgPQwjsiEM2kC7iv5SGlFKUaBVLMmgWR0CtLXB6By0bdX2UKGgGaAloD0MI/fm2YKmu77+UhpRSlGgVSzJoFkdArS0f8IiTuHV9lChoBmgJaA9DCLjKEwg7hfW/lIaUUpRoFUsyaBZHQK0s0Mx46fd1fZQoaAZoCWgPQwihhQSMLu/mv5SGlFKUaBVLMmgWR0CtLxI3zcyndX2UKGgGaAloD0MIu7a3W5ID5b+UhpRSlGgVSzJoFkdArS7AuEmICXV9lChoBmgJaA9DCN1e0hitI/K/lIaUUpRoFUsyaBZHQK0ucPJaJRB1fZQoaAZoCWgPQwghIcoXtJDsv5SGlFKUaBVLMmgWR0CtLiG8ujASdX2UKGgGaAloD0MIAALWql0T7r+UhpRSlGgVSzJoFkdArTBPK4hEB3V9lChoBmgJaA9DCAngZvFiYd+/lIaUUpRoFUsyaBZHQK0v/hcZ9/l1fZQoaAZoCWgPQwiwBFJi1/bav5SGlFKUaBVLMmgWR0CtL610knkUdX2UKGgGaAloD0MIw9UBEHf16L+UhpRSlGgVSzJoFkdArS9eTibUgHV9lChoBmgJaA9DCE4qGmt/Z+6/lIaUUpRoFUsyaBZHQK0xhxDst051fZQoaAZoCWgPQwjaBBiWP1/sv5SGlFKUaBVLMmgWR0CtMTXnQpnZdX2UKGgGaAloD0MIFQFO7+L94L+UhpRSlGgVSzJoFkdArTDlHtnf23V9lChoBmgJaA9DCE5/9iNF5OG/lIaUUpRoFUsyaBZHQK0wlg0j1PF1fZQoaAZoCWgPQwiZt+o6VFPsv5SGlFKUaBVLMmgWR0CtMykytV7ydX2UKGgGaAloD0MIzO1e7pOj87+UhpRSlGgVSzJoFkdArTLZAKOT7nV9lChoBmgJaA9DCEzHnGfsS+O/lIaUUpRoFUsyaBZHQK0yiXTEzft1fZQoaAZoCWgPQwj1RxgGLDnlv5SGlFKUaBVLMmgWR0CtMjsMiKR/dX2UKGgGaAloD0MI2J3uPPEc8b+UhpRSlGgVSzJoFkdArTUrdpItlXV9lChoBmgJaA9DCGjNj7+0qOy/lIaUUpRoFUsyaBZHQK0022hIvrZ1fZQoaAZoCWgPQwhMqrab4Bvqv5SGlFKUaBVLMmgWR0CtNIudGy5adX2UKGgGaAloD0MIJSAm4UKe7b+UhpRSlGgVSzJoFkdArTQ9Muez2XV9lChoBmgJaA9DCAot6/6xkOO/lIaUUpRoFUsyaBZHQK03Ru5SWJJ1fZQoaAZoCWgPQwh1OSUgJiHxv5SGlFKUaBVLMmgWR0CtNvbTlT3qdX2UKGgGaAloD0MIceXsndHW8b+UhpRSlGgVSzJoFkdArTanQhOgx3V9lChoBmgJaA9DCLZJRWPtb+u/lIaUUpRoFUsyaBZHQK02WWKuSwJ1ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 31282,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7b42b71ec89caf4e3f4906c7ef80d9732e005b69d6547b8fb901cb0b894d6e4
|
3 |
+
size 45310
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8688f326bf61f6dc56e9bf3b7d66a9dd6442f9aad43e7ec47416b75df17a09d3
|
3 |
+
size 46590
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7feb44c1c040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feb44c155a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676481811148035793, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAW+jvPp6qUb35sBs/W+jvPp6qUb35sBs/W+jvPp6qUb35sBs/W+jvPp6qUb35sBs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUWiVv4mKSD6eL989hFHKv+RUvD7DpUE/QLNEP9vNUb9pdHW+CyhqP8MTsz6h0FA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABb6O8+nqpRvfmwGz+ClSw8E95HuxFlbDxb6O8+nqpRvfmwGz+ClSw8E95HuxFlbDxb6O8+nqpRvfmwGz+ClSw8E95HuxFlbDxb6O8+nqpRvfmwGz+ClSw8E95HuxFlbDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4685696 -0.0511881 0.60816914]\n [ 0.4685696 -0.0511881 0.60816914]\n [ 0.4685696 -0.0511881 0.60816914]\n [ 0.4685696 -0.0511881 0.60816914]]", "desired_goal": "[[-1.167246 0.19584097 0.10897754]\n [-1.5806127 0.36783516 0.7564356 ]\n [ 0.76836014 -0.81954736 -0.23970188]\n [ 0.9146735 0.34976014 0.8156834 ]]", "observation": "[[ 0.4685696 -0.0511881 0.60816914 0.01053369 -0.00304974 0.01442839]\n [ 0.4685696 -0.0511881 0.60816914 0.01053369 -0.00304974 0.01442839]\n [ 0.4685696 -0.0511881 0.60816914 0.01053369 -0.00304974 0.01442839]\n [ 0.4685696 -0.0511881 0.60816914 0.01053369 -0.00304974 0.01442839]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAT7/ZvY+r570MJhU9KoeGPRxOd70ADaM9YtGZvUtgfL04WH8+2/oLvhC4Qr2wRXA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10632192 -0.11312019 0.03641324]\n [ 0.06568749 -0.06037723 0.07961464]\n [-0.0751064 -0.06161527 0.24935997]\n [-0.13669913 -0.04753882 0.23464084]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXjC45o4+HMCUhpRSlIwBbJRLMowBdJRHQKeQF5eJHiF1fZQoaAZoCWgPQwgOL4hITcsTwJSGlFKUaBVLMmgWR0Cnj8EGZ/kOdX2UKGgGaAloD0MI04bD0sA/EsCUhpRSlGgVSzJoFkdAp49oGOdXk3V9lChoBmgJaA9DCKLPRxlxYQzAlIaUUpRoFUsyaBZHQKePEpCKJl91fZQoaAZoCWgPQwhvLZPheH4bwJSGlFKUaBVLMmgWR0CnkQJdrwfAdX2UKGgGaAloD0MIsoLfhhj/FMCUhpRSlGgVSzJoFkdAp5Cr+o99t3V9lChoBmgJaA9DCAQ7/gsEAQvAlIaUUpRoFUsyaBZHQKeQUvEjxCp1fZQoaAZoCWgPQwiBmIQLeZQXwJSGlFKUaBVLMmgWR0Cnj/1HnU2DdX2UKGgGaAloD0MI8gpET8rECMCUhpRSlGgVSzJoFkdAp5H20w8GLXV9lChoBmgJaA9DCG8QrRVtHhDAlIaUUpRoFUsyaBZHQKeRoFfzBhx1fZQoaAZoCWgPQwhNaJJYUr4VwJSGlFKUaBVLMmgWR0CnkUdPUKAsdX2UKGgGaAloD0MIiZenc0XJFMCUhpRSlGgVSzJoFkdAp5DyAhB7eHV9lChoBmgJaA9DCEDZlCu8aw/AlIaUUpRoFUsyaBZHQKeS7PVurIZ1fZQoaAZoCWgPQwjYEYdsIK0RwJSGlFKUaBVLMmgWR0CnkpZi/fwadX2UKGgGaAloD0MITraBO1BHFMCUhpRSlGgVSzJoFkdAp5I9YOlO5HV9lChoBmgJaA9DCFfuBWaFshDAlIaUUpRoFUsyaBZHQKeR58fFJg91fZQoaAZoCWgPQwgHQUerWlISwJSGlFKUaBVLMmgWR0CnlGwYtQKsdX2UKGgGaAloD0MI38FPHEBPF8CUhpRSlGgVSzJoFkdAp5QWFxn3+XV9lChoBmgJaA9DCC4CY30DsxXAlIaUUpRoFUsyaBZHQKeTvesxO+J1fZQoaAZoCWgPQwhK7xtfewYJwJSGlFKUaBVLMmgWR0Cnk2jebd8BdX2UKGgGaAloD0MIPQytTs7QDMCUhpRSlGgVSzJoFkdAp5X5xBE8aHV9lChoBmgJaA9DCBO1NLdCmArAlIaUUpRoFUsyaBZHQKeVo9fTkQx1fZQoaAZoCWgPQwhj7e9sj94ZwJSGlFKUaBVLMmgWR0CnlUuqebuudX2UKGgGaAloD0MIghspWyStHcCUhpRSlGgVSzJoFkdAp5T3dM0xd3V9lChoBmgJaA9DCPYn8bkT7A3AlIaUUpRoFUsyaBZHQKeXjV/+bVl1fZQoaAZoCWgPQwjGMZI9Qs0PwJSGlFKUaBVLMmgWR0Cnlze7Dl5odX2UKGgGaAloD0MIaXHGMCcYIMCUhpRSlGgVSzJoFkdAp5bfxH5JsnV9lChoBmgJaA9DCGZMwRpn8wfAlIaUUpRoFUsyaBZHQKeWirsjVx11fZQoaAZoCWgPQwghOgSOBNoHwJSGlFKUaBVLMmgWR0CnmTXhOxjbdX2UKGgGaAloD0MIXtiarbwsIcCUhpRSlGgVSzJoFkdAp5jgQL/jsHV9lChoBmgJaA9DCCECDqFKbRzAlIaUUpRoFUsyaBZHQKeYh+l0o0B1fZQoaAZoCWgPQwhTl4xjJHsLwJSGlFKUaBVLMmgWR0CnmDOpCKJmdX2UKGgGaAloD0MIKVlOQunLE8CUhpRSlGgVSzJoFkdAp5rldkauOnV9lChoBmgJaA9DCGSUZ14OSxXAlIaUUpRoFUsyaBZHQKeaj+yZ8a51fZQoaAZoCWgPQwiNJhdjYA0QwJSGlFKUaBVLMmgWR0CnmjetSydGdX2UKGgGaAloD0MI/yJozCTKBsCUhpRSlGgVSzJoFkdAp5niubI91XV9lChoBmgJaA9DCFqCjIAKBwrAlIaUUpRoFUsyaBZHQKeckTmnwXt1fZQoaAZoCWgPQwiJRKFl3V8OwJSGlFKUaBVLMmgWR0CnnDuWKMvRdX2UKGgGaAloD0MI5Zgs7j9yDsCUhpRSlGgVSzJoFkdAp5vjTH80lHV9lChoBmgJaA9DCInTSba6HBfAlIaUUpRoFUsyaBZHQKebjos7MgV1fZQoaAZoCWgPQwgN38K68Q4OwJSGlFKUaBVLMmgWR0Cnndfc32mIdX2UKGgGaAloD0MIv7UTJSFRCMCUhpRSlGgVSzJoFkdAp52BMURFqnV9lChoBmgJaA9DCBIR/kXQsCDAlIaUUpRoFUsyaBZHQKedKDnNgSh1fZQoaAZoCWgPQwgUzm4tk5EYwJSGlFKUaBVLMmgWR0CnnNKZML4OdX2UKGgGaAloD0MIVOBkG7iDCMCUhpRSlGgVSzJoFkdAp57Iaef7JnV9lChoBmgJaA9DCPEtrBvvvhDAlIaUUpRoFUsyaBZHQKeecdGRV6x1fZQoaAZoCWgPQwiTGARWDq0PwJSGlFKUaBVLMmgWR0Cnnhji4rjHdX2UKGgGaAloD0MI8FF/vcKSEsCUhpRSlGgVSzJoFkdAp53DVawD/3V9lChoBmgJaA9DCBbB/1ayoxjAlIaUUpRoFUsyaBZHQKefxCdjG1h1fZQoaAZoCWgPQwha1v1jIZoMwJSGlFKUaBVLMmgWR0Cnn24AbQ1KdX2UKGgGaAloD0MIvjCZKhh1AsCUhpRSlGgVSzJoFkdAp58VC7btZ3V9lChoBmgJaA9DCBhd3hyu1QnAlIaUUpRoFUsyaBZHQKeev4tYjjd1fZQoaAZoCWgPQwjooEs49PYPwJSGlFKUaBVLMmgWR0CnoLGWldkbdX2UKGgGaAloD0MIPDHrxVBuG8CUhpRSlGgVSzJoFkdAp6BbIT4+KXV9lChoBmgJaA9DCPpEniRdgxXAlIaUUpRoFUsyaBZHQKegAinpB5Z1fZQoaAZoCWgPQwgUIApmTOEewJSGlFKUaBVLMmgWR0Cnn6ymZVn3dX2UKGgGaAloD0MIpaMczCZwH8CUhpRSlGgVSzJoFkdAp6GjJCBwuXV9lChoBmgJaA9DCMnnFU890g3AlIaUUpRoFUsyaBZHQKehTLzwtrd1fZQoaAZoCWgPQwjuQnOdRjoKwJSGlFKUaBVLMmgWR0CnoPP/rB0qdX2UKGgGaAloD0MImiLA6V1cCcCUhpRSlGgVSzJoFkdAp6CeaOPvKHV9lChoBmgJaA9DCCXLSSh9ARHAlIaUUpRoFUsyaBZHQKeimm7aqS51fZQoaAZoCWgPQwie7jzxnM0TwJSGlFKUaBVLMmgWR0CnokQSamXPdX2UKGgGaAloD0MIPSr+74gKDsCUhpRSlGgVSzJoFkdAp6HrJCBwuXV9lChoBmgJaA9DCPje36C92hTAlIaUUpRoFUsyaBZHQKehlYeT3Zh1fZQoaAZoCWgPQwj0wMdgxckWwJSGlFKUaBVLMmgWR0Cno41QqI8AdX2UKGgGaAloD0MID7VtGAWxG8CUhpRSlGgVSzJoFkdAp6M2uvECNnV9lChoBmgJaA9DCCMUW0HTohbAlIaUUpRoFUsyaBZHQKei3b5dnkF1fZQoaAZoCWgPQwj2DUxuFCkZwJSGlFKUaBVLMmgWR0CnoogXdj5LdX2UKGgGaAloD0MIKCzxgLI5EsCUhpRSlGgVSzJoFkdAp6SAAAAAAHV9lChoBmgJaA9DCAwepn1z3wvAlIaUUpRoFUsyaBZHQKekKWDYh+x1fZQoaAZoCWgPQwj61RwgmIMTwJSGlFKUaBVLMmgWR0Cno9BSDRMOdX2UKGgGaAloD0MIMZi/QuaqDMCUhpRSlGgVSzJoFkdAp6N6suFpPHV9lChoBmgJaA9DCPziUpW2QCPAlIaUUpRoFUsyaBZHQKelbJCBwuN1fZQoaAZoCWgPQwhNSkG3lxQSwJSGlFKUaBVLMmgWR0CnpRYTbnHOdX2UKGgGaAloD0MIJVryeFp+CsCUhpRSlGgVSzJoFkdAp6S9KGtZFHV9lChoBmgJaA9DCMH/VrJj8xDAlIaUUpRoFUsyaBZHQKekZ4yoGY91fZQoaAZoCWgPQwiCcAUU6gkQwJSGlFKUaBVLMmgWR0Cnpl4yGi5/dX2UKGgGaAloD0MIzSN/MPB8F8CUhpRSlGgVSzJoFkdAp6YHl0YCQ3V9lChoBmgJaA9DCE/Pu7Gg0AvAlIaUUpRoFUsyaBZHQKelro4dZJV1fZQoaAZoCWgPQwhjey3ovdEHwJSGlFKUaBVLMmgWR0CnpVj0Dlo2dX2UKGgGaAloD0MIMevFUE7kGMCUhpRSlGgVSzJoFkdAp6dKmj0tiHV9lChoBmgJaA9DCBhcc0f/CwvAlIaUUpRoFUsyaBZHQKem9Lxqfvp1fZQoaAZoCWgPQwgbZf1mYgoVwJSGlFKUaBVLMmgWR0CnppxbB42TdX2UKGgGaAloD0MIJjj1geTdHMCUhpRSlGgVSzJoFkdAp6ZHH/95yHV9lChoBmgJaA9DCKtdE9Ia4xzAlIaUUpRoFUsyaBZHQKeoP9a2Wpt1fZQoaAZoCWgPQwhuwOeHEcISwJSGlFKUaBVLMmgWR0Cnp+nNorWidX2UKGgGaAloD0MIJ0wYzco2EcCUhpRSlGgVSzJoFkdAp6eQtBfKIXV9lChoBmgJaA9DCKiLFMrC1xDAlIaUUpRoFUsyaBZHQKenOxXXAdp1fZQoaAZoCWgPQwjlJmppbpUTwJSGlFKUaBVLMmgWR0CnqSjZcs19dX2UKGgGaAloD0MIrhBWYwlLDcCUhpRSlGgVSzJoFkdAp6jST2WY4XV9lChoBmgJaA9DCJJ2o4/58BDAlIaUUpRoFUsyaBZHQKeoeVVPva11fZQoaAZoCWgPQwhZw0Xu6YoWwJSGlFKUaBVLMmgWR0CnqCPBJqZddX2UKGgGaAloD0MINs07TtHxDMCUhpRSlGgVSzJoFkdAp6oay4Wk8HV9lChoBmgJaA9DCJ4oCYm0vRLAlIaUUpRoFUsyaBZHQKepxGrjo6l1fZQoaAZoCWgPQwhoQpPEkkIawJSGlFKUaBVLMmgWR0CnqWuQyRCAdX2UKGgGaAloD0MIT3eeeM5WDcCUhpRSlGgVSzJoFkdAp6kWBDohZHV9lChoBmgJaA9DCAdfmEwVLA/AlIaUUpRoFUsyaBZHQKerD/oaDPJ1fZQoaAZoCWgPQwipoKLqVyobwJSGlFKUaBVLMmgWR0CnqrmpMpPRdX2UKGgGaAloD0MIZOlDF9Q3DMCUhpRSlGgVSzJoFkdAp6pg0CRwInV9lChoBmgJaA9DCKHWNO84NRvAlIaUUpRoFUsyaBZHQKeqC1TisGR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f393d7cf790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f393d7c96c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1001024, "_total_timesteps": 1001000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676533028566359735, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3t+dv4ArqD8DmoM+VNhzPyHJ1r6HppK/dJaHvwBAgL+QK7y+46qhvjUEMT40iUQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcK+5v6Orqj93zjQ+TJWSP6C6577Mw1q/OSSKv7k3iL87bMG+dQGmvtO9qj5MGks/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADe352/gCuoPwOagz4BRek9OgEku+LLTj5U2HM/IcnWvoemkr9tuoM/fRYsPjODwT90loe/AECAv5ArvL7jnwe+v8tEvpKPLT7jqqG+NQQxPjSJRD+ex7Q8OZ/4PHqY3TyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.2333944 1.3138275 0.2570344 ]\n [ 0.95251966 -0.41950324 -1.145707 ]\n [-1.059279 -1.0019531 -0.36751986]\n [-0.3157569 0.17286761 0.76771855]]", "desired_goal": "[[-1.4506664 1.3333629 0.17656885]\n [ 1.1451812 -0.4525957 -0.8545501 ]\n [-1.0792304 -1.0642005 -0.37777886]\n [-0.32422987 0.3334795 0.79337 ]]", "observation": "[[-1.2333944 1.3138275 0.2570344 0.11390115 -0.00250251 0.20194963]\n [ 0.95251966 -0.41950324 -1.145707 1.0291268 0.16805454 1.5118164 ]\n [-1.059279 -1.0019531 -0.36751986 -0.13244586 -0.19218348 0.16949299]\n [-0.3157569 0.17286761 0.76771855 0.02206784 0.03034936 0.02705025]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6A/5vYVhpr2KKEk+PPFsvT4eeb2nbnM+0P4SPf32+T0wb2w9zCrGPTn7AT4xeSc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12161237 -0.08124069 0.1964437 ]\n [-0.05784725 -0.06081986 0.2377268 ]\n [ 0.03588754 0.12205312 0.05772322]\n [ 0.09676132 0.1269349 0.16354825]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -2.3976023975968985e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICqAYWTLH7b+UhpRSlIwBbJRLMowBdJRHQK0RUt7rs0J1fZQoaAZoCWgPQwjovpzZrlDlv5SGlFKUaBVLMmgWR0CtEQG/etSydX2UKGgGaAloD0MIZJP8iF8x4b+UhpRSlGgVSzJoFkdArRCxEroW6HV9lChoBmgJaA9DCPPn24KlevG/lIaUUpRoFUsyaBZHQK0QYfHPu5V1fZQoaAZoCWgPQwj7JHfYRGbrv5SGlFKUaBVLMmgWR0CtE0mAskIHdX2UKGgGaAloD0MIsOjWa3pQ67+UhpRSlGgVSzJoFkdArRL42/BWP3V9lChoBmgJaA9DCEeum1Jea/m/lIaUUpRoFUsyaBZHQK0SqU4aP0Z1fZQoaAZoCWgPQwjYtiizQSb0v5SGlFKUaBVLMmgWR0CtEltL127ndX2UKGgGaAloD0MIBYwubw7X5L+UhpRSlGgVSzJoFkdArRV+nn+yaHV9lChoBmgJaA9DCMwpATEJ1/q/lIaUUpRoFUsyaBZHQK0VL/c32mJ1fZQoaAZoCWgPQwgqc/ON6J7mv5SGlFKUaBVLMmgWR0CtFOAR02cbdX2UKGgGaAloD0MIQIo6cw8J9L+UhpRSlGgVSzJoFkdArRSR66asqHV9lChoBmgJaA9DCBLYnINnQuS/lIaUUpRoFUsyaBZHQK0XpOtW+491fZQoaAZoCWgPQwjD9L2G4Ljjv5SGlFKUaBVLMmgWR0CtF1R3eN1hdX2UKGgGaAloD0MIIEPHDiox9L+UhpRSlGgVSzJoFkdArRcFIAfdRHV9lChoBmgJaA9DCDl/EwoR8PC/lIaUUpRoFUsyaBZHQK0Wtz/6wdN1fZQoaAZoCWgPQwgqqRPQRNjsv5SGlFKUaBVLMmgWR0CtGcN0vGp/dX2UKGgGaAloD0MI3Zp0WyIXzr+UhpRSlGgVSzJoFkdArRlzYChexHV9lChoBmgJaA9DCFM9mX/0jfa/lIaUUpRoFUsyaBZHQK0ZJA6+36R1fZQoaAZoCWgPQwgNwtzu5T7Vv5SGlFKUaBVLMmgWR0CtGNXVsk6cdX2UKGgGaAloD0MI7RFqhlTR9r+UhpRSlGgVSzJoFkdArRw06BAfMnV9lChoBmgJaA9DCNoaEYyDy/C/lIaUUpRoFUsyaBZHQK0b5KkEcKh1fZQoaAZoCWgPQwhGzVfJx27wv5SGlFKUaBVLMmgWR0CtG5bY9Pk8dX2UKGgGaAloD0MIUu3T8ZgB4r+UhpRSlGgVSzJoFkdArRtJBu4wy3V9lChoBmgJaA9DCH433bJDfOe/lIaUUpRoFUsyaBZHQK0eSh8IAwR1fZQoaAZoCWgPQwh6UiY1tAHEv5SGlFKUaBVLMmgWR0CtHfjW07bMdX2UKGgGaAloD0MIIZOMnIU97b+UhpRSlGgVSzJoFkdArR2oKWszVXV9lChoBmgJaA9DCH1BCwkYXdu/lIaUUpRoFUsyaBZHQK0dWRFI/aB1fZQoaAZoCWgPQwgrTUpBt1f2v5SGlFKUaBVLMmgWR0CtH4kY4yXVdX2UKGgGaAloD0MIYmafxyhP4r+UhpRSlGgVSzJoFkdArR837zkIX3V9lChoBmgJaA9DCFyOVyB60vO/lIaUUpRoFUsyaBZHQK0e5x7zCk51fZQoaAZoCWgPQwhoeLMG76vov5SGlFKUaBVLMmgWR0CtHpg8jiXIdX2UKGgGaAloD0MICi3r/rEQ17+UhpRSlGgVSzJoFkdArSC87CBPK3V9lChoBmgJaA9DCIY5QZscvua/lIaUUpRoFUsyaBZHQK0ga8Zk0791fZQoaAZoCWgPQwg8+fTYlgHsv5SGlFKUaBVLMmgWR0CtIBr6tT1kdX2UKGgGaAloD0MIkDLiAtAo57+UhpRSlGgVSzJoFkdArR/L8BMi8nV9lChoBmgJaA9DCHpvDAHAMe+/lIaUUpRoFUsyaBZHQK0h/lFtsN51fZQoaAZoCWgPQwjdJXFWRE33v5SGlFKUaBVLMmgWR0CtIa0pmVZ+dX2UKGgGaAloD0MI9n04SIjy6b+UhpRSlGgVSzJoFkdArSFcYbbUPXV9lChoBmgJaA9DCNUkeEMaFeq/lIaUUpRoFUsyaBZHQK0hDUnXumd1fZQoaAZoCWgPQwggCft2EhHUv5SGlFKUaBVLMmgWR0CtIzuOsDGMdX2UKGgGaAloD0MIfZV87C5Q8L+UhpRSlGgVSzJoFkdArSLqT+vQnnV9lChoBmgJaA9DCPT91HjpZvS/lIaUUpRoFUsyaBZHQK0ima2nbZh1fZQoaAZoCWgPQwgHJcy0/Wv0v5SGlFKUaBVLMmgWR0CtIkqe9SMtdX2UKGgGaAloD0MIlwFnKVlO67+UhpRSlGgVSzJoFkdArSR/sJIDo3V9lChoBmgJaA9DCKtf6Xx41vi/lIaUUpRoFUsyaBZHQK0kLoi9qUN1fZQoaAZoCWgPQwgQk3Ahj2Dpv5SGlFKUaBVLMmgWR0CtI93yZrpJdX2UKGgGaAloD0MIePLpsS2D9b+UhpRSlGgVSzJoFkdArSOO2kSElHV9lChoBmgJaA9DCOJ30y07ROO/lIaUUpRoFUsyaBZHQK0lvcjZ+QV1fZQoaAZoCWgPQwgm32xzY/rjv5SGlFKUaBVLMmgWR0CtJWypBHCodX2UKGgGaAloD0MIy6Kwi6KH8L+UhpRSlGgVSzJoFkdArSUb+rELpnV9lChoBmgJaA9DCKVo5V5gVuC/lIaUUpRoFUsyaBZHQK0kzMCcPOJ1fZQoaAZoCWgPQwioAYOkT6vsv5SGlFKUaBVLMmgWR0CtJvV9Wp6ydX2UKGgGaAloD0MItqFinL+J5L+UhpRSlGgVSzJoFkdArSakLSeAeHV9lChoBmgJaA9DCGixFMlXguy/lIaUUpRoFUsyaBZHQK0mU1/DtPZ1fZQoaAZoCWgPQwg51sVtNAD5v5SGlFKUaBVLMmgWR0CtJgRYJVsDdX2UKGgGaAloD0MIoZ+p1y0C7r+UhpRSlGgVSzJoFkdArShlCHARCnV9lChoBmgJaA9DCPVjk/yI3+K/lIaUUpRoFUsyaBZHQK0oE7W/ag51fZQoaAZoCWgPQwggf2lRn6Tzv5SGlFKUaBVLMmgWR0CtJ8QLE1l5dX2UKGgGaAloD0MIE9Iag06I5L+UhpRSlGgVSzJoFkdArSd0+otL+XV9lChoBmgJaA9DCFd2weCau/K/lIaUUpRoFUsyaBZHQK0pqGnn+yZ1fZQoaAZoCWgPQwhkB5W4jrHwv5SGlFKUaBVLMmgWR0CtKVcyN4qxdX2UKGgGaAloD0MIBDi9i/fj6r+UhpRSlGgVSzJoFkdArSkGVeKKpHV9lChoBmgJaA9DCFbSim8ofPi/lIaUUpRoFUsyaBZHQK0ot0HyEtd1fZQoaAZoCWgPQwjEW+ffLnvxv5SGlFKUaBVLMmgWR0CtK1E1/DtPdX2UKGgGaAloD0MIw0maP6a16b+UhpRSlGgVSzJoFkdArSr/6wdKd3V9lChoBmgJaA9DCNXsgVZgSO+/lIaUUpRoFUsyaBZHQK0qsHoouwp1fZQoaAZoCWgPQwieJcgIqHDuv5SGlFKUaBVLMmgWR0CtKmGJFb3XdX2UKGgGaAloD0MIVAJiEi7k4L+UhpRSlGgVSzJoFkdArSyCvX9R8HV9lChoBmgJaA9DCHC044bfTe2/lIaUUpRoFUsyaBZHQK0sMXUH6dl1fZQoaAZoCWgPQwjTn/1IEZnqv5SGlFKUaBVLMmgWR0CtK+CWE9McdX2UKGgGaAloD0MItd/aiZKQ6L+UhpRSlGgVSzJoFkdArSuRoAXEZXV9lChoBmgJaA9DCFn8prBSQeG/lIaUUpRoFUsyaBZHQK0twZ5zHS51fZQoaAZoCWgPQwjsiEM2kC7iv5SGlFKUaBVLMmgWR0CtLXB6By0bdX2UKGgGaAloD0MI/fm2YKmu77+UhpRSlGgVSzJoFkdArS0f8IiTuHV9lChoBmgJaA9DCLjKEwg7hfW/lIaUUpRoFUsyaBZHQK0s0Mx46fd1fZQoaAZoCWgPQwihhQSMLu/mv5SGlFKUaBVLMmgWR0CtLxI3zcyndX2UKGgGaAloD0MIu7a3W5ID5b+UhpRSlGgVSzJoFkdArS7AuEmICXV9lChoBmgJaA9DCN1e0hitI/K/lIaUUpRoFUsyaBZHQK0ucPJaJRB1fZQoaAZoCWgPQwghIcoXtJDsv5SGlFKUaBVLMmgWR0CtLiG8ujASdX2UKGgGaAloD0MIAALWql0T7r+UhpRSlGgVSzJoFkdArTBPK4hEB3V9lChoBmgJaA9DCAngZvFiYd+/lIaUUpRoFUsyaBZHQK0v/hcZ9/l1fZQoaAZoCWgPQwiwBFJi1/bav5SGlFKUaBVLMmgWR0CtL610knkUdX2UKGgGaAloD0MIw9UBEHf16L+UhpRSlGgVSzJoFkdArS9eTibUgHV9lChoBmgJaA9DCE4qGmt/Z+6/lIaUUpRoFUsyaBZHQK0xhxDst051fZQoaAZoCWgPQwjaBBiWP1/sv5SGlFKUaBVLMmgWR0CtMTXnQpnZdX2UKGgGaAloD0MIFQFO7+L94L+UhpRSlGgVSzJoFkdArTDlHtnf23V9lChoBmgJaA9DCE5/9iNF5OG/lIaUUpRoFUsyaBZHQK0wlg0j1PF1fZQoaAZoCWgPQwiZt+o6VFPsv5SGlFKUaBVLMmgWR0CtMykytV7ydX2UKGgGaAloD0MIzO1e7pOj87+UhpRSlGgVSzJoFkdArTLZAKOT7nV9lChoBmgJaA9DCEzHnGfsS+O/lIaUUpRoFUsyaBZHQK0yiXTEzft1fZQoaAZoCWgPQwj1RxgGLDnlv5SGlFKUaBVLMmgWR0CtMjsMiKR/dX2UKGgGaAloD0MI2J3uPPEc8b+UhpRSlGgVSzJoFkdArTUrdpItlXV9lChoBmgJaA9DCGjNj7+0qOy/lIaUUpRoFUsyaBZHQK0022hIvrZ1fZQoaAZoCWgPQwhMqrab4Bvqv5SGlFKUaBVLMmgWR0CtNIudGy5adX2UKGgGaAloD0MIJSAm4UKe7b+UhpRSlGgVSzJoFkdArTQ9Muez2XV9lChoBmgJaA9DCAot6/6xkOO/lIaUUpRoFUsyaBZHQK03Ru5SWJJ1fZQoaAZoCWgPQwh1OSUgJiHxv5SGlFKUaBVLMmgWR0CtNvbTlT3qdX2UKGgGaAloD0MIceXsndHW8b+UhpRSlGgVSzJoFkdArTanQhOgx3V9lChoBmgJaA9DCLZJRWPtb+u/lIaUUpRoFUsyaBZHQK02WWKuSwJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31282, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.8750869446899742, "std_reward": 0.30329861334312036, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T08:39:33.125856"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9131aa3dfb9293a99d7e6c09e470880dcc718b7a74ce69db7c6dff731630d0a
|
3 |
size 3056
|