EdenYav commited on
Commit
a6793d1
1 Parent(s): ec84e40

Push LunarLander-v2 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 248.93 +/- 15.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9819968160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f98199681f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9819968280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9819968310>", "_build": "<function ActorCriticPolicy._build at 0x7f98199683a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9819968430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f98199684c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9819968550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f98199685e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9819968670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9819968700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9819968790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f98199618d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675754989085730459, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZ+yT1SfpK7+m64PB3NDDwYVvy8GHrwPAAAgD8AAIA/mgZcvTPXNT96g+872qt3vtulD7zixCc9AAAAAAAAAACa3as9XBskukaHJL1it2q9ek8/uqRmBr0AAAAAAAAAAABNvzznVVE/WBZgPeO0o74jgti8ZwcWPAAAAAAAAAAAGllcvj4h7D4vTQg+z9V3vn4yVL1dRLk9AAAAAAAAAACab6E9BVmWu+5Rv70wYBe+aqCMPF+AuT0AAAAAAACAP5pz3j2M8bM+NjcivbC5k74JbM28EFd3vQAAAAAAAAAAZiYevI4Egj0Kpiy9QQAWvrypHb3umLg9AAAAAAAAAACa+pK9WfmiPo0WbD5VFAO+9htzPdZJlDwAAAAAAAAAANpvgb27GVo/bGIsPXerrr6D6Pm9aLayPAAAAAAAAAAATceFPSkcBLq1r866nG6LuVh5njvS7AQ6AACAPwAAgD8aVVc924nGPTs9Vj10ZnS+aqASPeR1mrwAAAAAAAAAAM1PNT0pMEG62MkCt+8zIbE+vFI6GrcWNgAAgD8AAIA/ZuX9PcOAOD94PVC9vY6SvnwBCT0qiSa+AAAAAAAAAADNCiK8cWkeOliyvzvMLJo4J++Tuj0kpDcAAIA/AACAP2ap6Dz2EiM7CaSxvAW79TykEnS7TiWuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1xNdF36UcUCUhpRSlIwBbJRNLQGMAXSUR0Cc+3I6Kcd6dX2UKGgGaAloD0MIVkj5SbWmcECUhpRSlGgVTUkBaBZHQJz7zVbzK9x1fZQoaAZoCWgPQwhZUu4+x3NyQJSGlFKUaBVNLQFoFkdAnPvbmdRR/HV9lChoBmgJaA9DCNEjRs+tEWtAlIaUUpRoFU1AAWgWR0Cc/BueBg/kdX2UKGgGaAloD0MIxYzw9iAvc0CUhpRSlGgVTQIBaBZHQJz97DBMzuZ1fZQoaAZoCWgPQwhZTkLpi1ZuQJSGlFKUaBVNMAFoFkdAnP4A79ycTnV9lChoBmgJaA9DCBPU8C2sWHFAlIaUUpRoFU00AWgWR0Cc/0eLehwmdX2UKGgGaAloD0MIwono19ZvA0CUhpRSlGgVS/FoFkdAnP9ha9sabXV9lChoBmgJaA9DCDuqmiBqpnNAlIaUUpRoFU0FAWgWR0CdABHXVbzLdX2UKGgGaAloD0MIE/OspJUyc0CUhpRSlGgVTSIBaBZHQJ0AFHuqm0p1fZQoaAZoCWgPQwjZCpqWWN1wQJSGlFKUaBVNMwFoFkdAnQA41k1/D3V9lChoBmgJaA9DCAExCRcygnFAlIaUUpRoFU1KAWgWR0CdAIaGpMpPdX2UKGgGaAloD0MIoKnXLQJbOECUhpRSlGgVS/VoFkdAnQC+YlY2bXV9lChoBmgJaA9DCBy1wvS94W1AlIaUUpRoFU0iAWgWR0CdAy3FUADJdX2UKGgGaAloD0MIigJ9Io8jc0CUhpRSlGgVTWIBaBZHQJ0ERWRzRx91fZQoaAZoCWgPQwhuUtFYe/xxQJSGlFKUaBVNTAFoFkdAnQRn5JsfrHV9lChoBmgJaA9DCN1dZ0O+l3FAlIaUUpRoFU0SAWgWR0CdBdl0YCQtdX2UKGgGaAloD0MI5+EEptPucECUhpRSlGgVTSEBaBZHQJ0GG/ag2611fZQoaAZoCWgPQwhLBoAqrglwQJSGlFKUaBVNLgFoFkdAnQbUKNQ0oHV9lChoBmgJaA9DCETf3cqSSHBAlIaUUpRoFU1NAWgWR0CdCF7aIvaldX2UKGgGaAloD0MIiC8TRcjucECUhpRSlGgVTUIBaBZHQJ0KOaAnUlR1fZQoaAZoCWgPQwgracU3VLBxQJSGlFKUaBVNKAFoFkdAnQq9NWU8m3V9lChoBmgJaA9DCKuy74og2nBAlIaUUpRoFU1gAWgWR0CdC3/J/5LzdX2UKGgGaAloD0MIC5krg2olckCUhpRSlGgVTT8BaBZHQJ0Mn+WGATZ1fZQoaAZoCWgPQwi0q5DyEz9yQJSGlFKUaBVNLgFoFkdAnQzMNpdrwnV9lChoBmgJaA9DCD8Cf/i51HFAlIaUUpRoFU1EAWgWR0CdDQSiM5wPdX2UKGgGaAloD0MIzlSIR6IQckCUhpRSlGgVTV4BaBZHQJ0NBikO7QN1fZQoaAZoCWgPQwi2heelIgpxQJSGlFKUaBVNVwFoFkdAnQ4UHdGiH3V9lChoBmgJaA9DCMBeYcF9R21AlIaUUpRoFU16AWgWR0CdDuEx7AtWdX2UKGgGaAloD0MI/DbEeE13b0CUhpRSlGgVTUoBaBZHQJ0QZ42S+xp1fZQoaAZoCWgPQwhQcodNJNlwQJSGlFKUaBVNHwFoFkdAnRGdr9ETg3V9lChoBmgJaA9DCBXgu83bqXFAlIaUUpRoFU1NAWgWR0CdEb0Cih38dX2UKGgGaAloD0MILbMIxRYOcECUhpRSlGgVTV0BaBZHQJ0SKwIMSbp1fZQoaAZoCWgPQwjd6jnpfX1tQJSGlFKUaBVNIAFoFkdAnRJcSoOx0XV9lChoBmgJaA9DCEkT7wBPCm1AlIaUUpRoFU08AWgWR0CdEmfa6BiDdX2UKGgGaAloD0MInZ/iOLCgcECUhpRSlGgVTUQBaBZHQJ0s/N4Z/Ct1fZQoaAZoCWgPQwjp1JXPMjJxQJSGlFKUaBVNIwFoFkdAnS2Tg62fCnV9lChoBmgJaA9DCH0kJT2M5XBAlIaUUpRoFU07AWgWR0CdL9khib2EdX2UKGgGaAloD0MIJNV3fpHicECUhpRSlGgVTScBaBZHQJ0xlUwSJ0p1fZQoaAZoCWgPQwiFPljGRs9wQJSGlFKUaBVNNwFoFkdAnTJLGm1pkHV9lChoBmgJaA9DCCP1nsrpp29AlIaUUpRoFU0sAWgWR0CdMkLQXyiFdX2UKGgGaAloD0MI02pI3GMxNECUhpRSlGgVS+xoFkdAnTQMjFAE+3V9lChoBmgJaA9DCNegL7097HBAlIaUUpRoFU1KAWgWR0CdNgEd/8VIdX2UKGgGaAloD0MIMSO8PYibcUCUhpRSlGgVTTcBaBZHQJ02PLSuyNZ1fZQoaAZoCWgPQwj6RnTPuqJwQJSGlFKUaBVNcAFoFkdAnTavT5O8CnV9lChoBmgJaA9DCPDC1mwl6XBAlIaUUpRoFU2bAWgWR0CdNyRPoFFEdX2UKGgGaAloD0MI7YLBNXeKbkCUhpRSlGgVTVEBaBZHQJ07Sa5PM0R1fZQoaAZoCWgPQwiE2QQYllNzQJSGlFKUaBVNPgFoFkdAnTtiEcsDn3V9lChoBmgJaA9DCJOq7SY423FAlIaUUpRoFU1WAWgWR0CdO6FbFCLNdX2UKGgGaAloD0MINlzkni5pcECUhpRSlGgVTR8BaBZHQJ09OUOd5IJ1fZQoaAZoCWgPQwhTz4JQXuhtQJSGlFKUaBVNegFoFkdAnT2zsdDIBHV9lChoBmgJaA9DCPm7d9RYbHBAlIaUUpRoFU0/AWgWR0CdPvspG4I9dX2UKGgGaAloD0MInnsPl9xCcUCUhpRSlGgVTRABaBZHQJ1AI+r2g391fZQoaAZoCWgPQwi94T5yq8NxQJSGlFKUaBVNSwFoFkdAnUEzVhCtzXV9lChoBmgJaA9DCOOON/ntDHFAlIaUUpRoFU07AWgWR0CdQZ/c32mIdX2UKGgGaAloD0MI2/eov95WcUCUhpRSlGgVTUQBaBZHQJ1CcxSHdoF1fZQoaAZoCWgPQwgFpP0PsKVyQJSGlFKUaBVNRwFoFkdAnUPLRv3rU3V9lChoBmgJaA9DCBoaTwSxKXJAlIaUUpRoFU0tAWgWR0CdRLxDb8FZdX2UKGgGaAloD0MI6N1YUJhJbECUhpRSlGgVTRwCaBZHQJ1FGHrQgLZ1fZQoaAZoCWgPQwhE/MOWXhpyQJSGlFKUaBVNVgFoFkdAnUWwM6RyO3V9lChoBmgJaA9DCI+M1ea/EnFAlIaUUpRoFU1dAWgWR0CdRhPU8V59dX2UKGgGaAloD0MIKEnXTP4KcECUhpRSlGgVTYMBaBZHQJ1H+sU7CBR1fZQoaAZoCWgPQwhXsmMjENpvQJSGlFKUaBVNMwFoFkdAnUh7N0NjLHV9lChoBmgJaA9DCDfjNERV7HBAlIaUUpRoFU1LAWgWR0CdSc0btJFtdX2UKGgGaAloD0MIT1jiAaUscUCUhpRSlGgVTTMBaBZHQJ1KXhS9/SZ1fZQoaAZoCWgPQwjThy6or1JxQJSGlFKUaBVNFAFoFkdAnUrIWP91l3V9lChoBmgJaA9DCD4jERpBE3JAlIaUUpRoFU1XAWgWR0CdTGAe7tiQdX2UKGgGaAloD0MIVd/5RQlsbUCUhpRSlGgVTZ8BaBZHQJ1NI7GNrCZ1fZQoaAZoCWgPQwhwQ4zXvH1vQJSGlFKUaBVNJQFoFkdAnU37cGkeqHV9lChoBmgJaA9DCOS7lLpk029AlIaUUpRoFU1RAWgWR0CdTm052hZhdX2UKGgGaAloD0MIbOun/6wlckCUhpRSlGgVTUUBaBZHQJ1O0tkFwDN1fZQoaAZoCWgPQwguyJbl6ydvQJSGlFKUaBVNKgFoFkdAnU77HIZIhHV9lChoBmgJaA9DCBAf2PFfTHJAlIaUUpRoFU1NAWgWR0CdUY55qubJdX2UKGgGaAloD0MI3GW/7nS+cUCUhpRSlGgVTT8BaBZHQJ1R1xwQ1791fZQoaAZoCWgPQwhKQiJtYzdsQJSGlFKUaBVNKwFoFkdAnVJaubI91XV9lChoBmgJaA9DCM1WXvK/E3BAlIaUUpRoFU03AWgWR0CdUnGRFI/adX2UKGgGaAloD0MIm64nuu6AckCUhpRSlGgVTUIBaBZHQJ1VKGZeAut1fZQoaAZoCWgPQwhD5V/LK0luQJSGlFKUaBVNPgFoFkdAnVWNS/CZW3V9lChoBmgJaA9DCD5ZMVwdunFAlIaUUpRoFU0eAWgWR0CdVieAd4mkdX2UKGgGaAloD0MIMgOV8e8pbUCUhpRSlGgVTT4BaBZHQJ1W6xbB42V1fZQoaAZoCWgPQwhAwjBgSSxxQJSGlFKUaBVNsQFoFkdAnVb4jSofjnV9lChoBmgJaA9DCJi/QuZKZnFAlIaUUpRoFU0YAWgWR0CdWIWszVMFdX2UKGgGaAloD0MIWOatuo7cb0CUhpRSlGgVTU8BaBZHQJ1YkKD01651fZQoaAZoCWgPQwjfMxKhEVVsQJSGlFKUaBVNQQFoFkdAnVlm9g4OtnV9lChoBmgJaA9DCOrNqPmqL29AlIaUUpRoFU1fAmgWR0CdnfosI3R5dX2UKGgGaAloD0MIU1vqIK8MYkCUhpRSlGgVTegDaBZHQJ25bEYO2Ap1fZQoaAZoCWgPQwi+M9qqJKxaQJSGlFKUaBVN6ANoFkdAnbqT+m3vyHV9lChoBmgJaA9DCLzOhvwzqmBAlIaUUpRoFU3oA2gWR0Cdu6KE384xdX2UKGgGaAloD0MINpNvtrmhW0CUhpRSlGgVTegDaBZHQJ272rksBhh1fZQoaAZoCWgPQwhqTfOOUyZdQJSGlFKUaBVN6ANoFkdAncG0OmR/3HV9lChoBmgJaA9DCDl/EwqRz2FAlIaUUpRoFU3oA2gWR0CdwldlNDc/dX2UKGgGaAloD0MIw5rKorAaVUCUhpRSlGgVTegDaBZHQJ3DYwIt16p1fZQoaAZoCWgPQwgjaMwk6oxaQJSGlFKUaBVN6ANoFkdAncN/+S8rZ3V9lChoBmgJaA9DCDuL3qmAQlhAlIaUUpRoFU3oA2gWR0CdyFAhB7eEdX2UKGgGaAloD0MI7UeKyLCDWUCUhpRSlGgVTegDaBZHQJ3JJwBHTZx1fZQoaAZoCWgPQwhQFymUhbNaQJSGlFKUaBVN6ANoFkdAncodDQZ4wHV9lChoBmgJaA9DCPJ9calKf1pAlIaUUpRoFU3oA2gWR0Cdyi04zabndX2UKGgGaAloD0MIirDh6RVyYECUhpRSlGgVTegDaBZHQJ3MBjd56dF1fZQoaAZoCWgPQwh7MZQT7chcQJSGlFKUaBVN6ANoFkdAncwSmEXcg3V9lChoBmgJaA9DCPg1kgThVlxAlIaUUpRoFU3oA2gWR0CdzP7zTWoWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:277fca26accadec01a16cb5fa56ea51996fdb04c26a1e414fd0f873b6139935f
3
+ size 147420
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9819968160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f98199681f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9819968280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9819968310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f98199683a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9819968430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f98199684c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9819968550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f98199685e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9819968670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9819968700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9819968790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f98199618d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675754989085730459,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZ+yT1SfpK7+m64PB3NDDwYVvy8GHrwPAAAgD8AAIA/mgZcvTPXNT96g+872qt3vtulD7zixCc9AAAAAAAAAACa3as9XBskukaHJL1it2q9ek8/uqRmBr0AAAAAAAAAAABNvzznVVE/WBZgPeO0o74jgti8ZwcWPAAAAAAAAAAAGllcvj4h7D4vTQg+z9V3vn4yVL1dRLk9AAAAAAAAAACab6E9BVmWu+5Rv70wYBe+aqCMPF+AuT0AAAAAAACAP5pz3j2M8bM+NjcivbC5k74JbM28EFd3vQAAAAAAAAAAZiYevI4Egj0Kpiy9QQAWvrypHb3umLg9AAAAAAAAAACa+pK9WfmiPo0WbD5VFAO+9htzPdZJlDwAAAAAAAAAANpvgb27GVo/bGIsPXerrr6D6Pm9aLayPAAAAAAAAAAATceFPSkcBLq1r866nG6LuVh5njvS7AQ6AACAPwAAgD8aVVc924nGPTs9Vj10ZnS+aqASPeR1mrwAAAAAAAAAAM1PNT0pMEG62MkCt+8zIbE+vFI6GrcWNgAAgD8AAIA/ZuX9PcOAOD94PVC9vY6SvnwBCT0qiSa+AAAAAAAAAADNCiK8cWkeOliyvzvMLJo4J++Tuj0kpDcAAIA/AACAP2ap6Dz2EiM7CaSxvAW79TykEnS7TiWuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1xNdF36UcUCUhpRSlIwBbJRNLQGMAXSUR0Cc+3I6Kcd6dX2UKGgGaAloD0MIVkj5SbWmcECUhpRSlGgVTUkBaBZHQJz7zVbzK9x1fZQoaAZoCWgPQwhZUu4+x3NyQJSGlFKUaBVNLQFoFkdAnPvbmdRR/HV9lChoBmgJaA9DCNEjRs+tEWtAlIaUUpRoFU1AAWgWR0Cc/BueBg/kdX2UKGgGaAloD0MIxYzw9iAvc0CUhpRSlGgVTQIBaBZHQJz97DBMzuZ1fZQoaAZoCWgPQwhZTkLpi1ZuQJSGlFKUaBVNMAFoFkdAnP4A79ycTnV9lChoBmgJaA9DCBPU8C2sWHFAlIaUUpRoFU00AWgWR0Cc/0eLehwmdX2UKGgGaAloD0MIwono19ZvA0CUhpRSlGgVS/FoFkdAnP9ha9sabXV9lChoBmgJaA9DCDuqmiBqpnNAlIaUUpRoFU0FAWgWR0CdABHXVbzLdX2UKGgGaAloD0MIE/OspJUyc0CUhpRSlGgVTSIBaBZHQJ0AFHuqm0p1fZQoaAZoCWgPQwjZCpqWWN1wQJSGlFKUaBVNMwFoFkdAnQA41k1/D3V9lChoBmgJaA9DCAExCRcygnFAlIaUUpRoFU1KAWgWR0CdAIaGpMpPdX2UKGgGaAloD0MIoKnXLQJbOECUhpRSlGgVS/VoFkdAnQC+YlY2bXV9lChoBmgJaA9DCBy1wvS94W1AlIaUUpRoFU0iAWgWR0CdAy3FUADJdX2UKGgGaAloD0MIigJ9Io8jc0CUhpRSlGgVTWIBaBZHQJ0ERWRzRx91fZQoaAZoCWgPQwhuUtFYe/xxQJSGlFKUaBVNTAFoFkdAnQRn5JsfrHV9lChoBmgJaA9DCN1dZ0O+l3FAlIaUUpRoFU0SAWgWR0CdBdl0YCQtdX2UKGgGaAloD0MI5+EEptPucECUhpRSlGgVTSEBaBZHQJ0GG/ag2611fZQoaAZoCWgPQwhLBoAqrglwQJSGlFKUaBVNLgFoFkdAnQbUKNQ0oHV9lChoBmgJaA9DCETf3cqSSHBAlIaUUpRoFU1NAWgWR0CdCF7aIvaldX2UKGgGaAloD0MIiC8TRcjucECUhpRSlGgVTUIBaBZHQJ0KOaAnUlR1fZQoaAZoCWgPQwgracU3VLBxQJSGlFKUaBVNKAFoFkdAnQq9NWU8m3V9lChoBmgJaA9DCKuy74og2nBAlIaUUpRoFU1gAWgWR0CdC3/J/5LzdX2UKGgGaAloD0MIC5krg2olckCUhpRSlGgVTT8BaBZHQJ0Mn+WGATZ1fZQoaAZoCWgPQwi0q5DyEz9yQJSGlFKUaBVNLgFoFkdAnQzMNpdrwnV9lChoBmgJaA9DCD8Cf/i51HFAlIaUUpRoFU1EAWgWR0CdDQSiM5wPdX2UKGgGaAloD0MIzlSIR6IQckCUhpRSlGgVTV4BaBZHQJ0NBikO7QN1fZQoaAZoCWgPQwi2heelIgpxQJSGlFKUaBVNVwFoFkdAnQ4UHdGiH3V9lChoBmgJaA9DCMBeYcF9R21AlIaUUpRoFU16AWgWR0CdDuEx7AtWdX2UKGgGaAloD0MI/DbEeE13b0CUhpRSlGgVTUoBaBZHQJ0QZ42S+xp1fZQoaAZoCWgPQwhQcodNJNlwQJSGlFKUaBVNHwFoFkdAnRGdr9ETg3V9lChoBmgJaA9DCBXgu83bqXFAlIaUUpRoFU1NAWgWR0CdEb0Cih38dX2UKGgGaAloD0MILbMIxRYOcECUhpRSlGgVTV0BaBZHQJ0SKwIMSbp1fZQoaAZoCWgPQwjd6jnpfX1tQJSGlFKUaBVNIAFoFkdAnRJcSoOx0XV9lChoBmgJaA9DCEkT7wBPCm1AlIaUUpRoFU08AWgWR0CdEmfa6BiDdX2UKGgGaAloD0MInZ/iOLCgcECUhpRSlGgVTUQBaBZHQJ0s/N4Z/Ct1fZQoaAZoCWgPQwjp1JXPMjJxQJSGlFKUaBVNIwFoFkdAnS2Tg62fCnV9lChoBmgJaA9DCH0kJT2M5XBAlIaUUpRoFU07AWgWR0CdL9khib2EdX2UKGgGaAloD0MIJNV3fpHicECUhpRSlGgVTScBaBZHQJ0xlUwSJ0p1fZQoaAZoCWgPQwiFPljGRs9wQJSGlFKUaBVNNwFoFkdAnTJLGm1pkHV9lChoBmgJaA9DCCP1nsrpp29AlIaUUpRoFU0sAWgWR0CdMkLQXyiFdX2UKGgGaAloD0MI02pI3GMxNECUhpRSlGgVS+xoFkdAnTQMjFAE+3V9lChoBmgJaA9DCNegL7097HBAlIaUUpRoFU1KAWgWR0CdNgEd/8VIdX2UKGgGaAloD0MIMSO8PYibcUCUhpRSlGgVTTcBaBZHQJ02PLSuyNZ1fZQoaAZoCWgPQwj6RnTPuqJwQJSGlFKUaBVNcAFoFkdAnTavT5O8CnV9lChoBmgJaA9DCPDC1mwl6XBAlIaUUpRoFU2bAWgWR0CdNyRPoFFEdX2UKGgGaAloD0MI7YLBNXeKbkCUhpRSlGgVTVEBaBZHQJ07Sa5PM0R1fZQoaAZoCWgPQwiE2QQYllNzQJSGlFKUaBVNPgFoFkdAnTtiEcsDn3V9lChoBmgJaA9DCJOq7SY423FAlIaUUpRoFU1WAWgWR0CdO6FbFCLNdX2UKGgGaAloD0MINlzkni5pcECUhpRSlGgVTR8BaBZHQJ09OUOd5IJ1fZQoaAZoCWgPQwhTz4JQXuhtQJSGlFKUaBVNegFoFkdAnT2zsdDIBHV9lChoBmgJaA9DCPm7d9RYbHBAlIaUUpRoFU0/AWgWR0CdPvspG4I9dX2UKGgGaAloD0MInnsPl9xCcUCUhpRSlGgVTRABaBZHQJ1AI+r2g391fZQoaAZoCWgPQwi94T5yq8NxQJSGlFKUaBVNSwFoFkdAnUEzVhCtzXV9lChoBmgJaA9DCOOON/ntDHFAlIaUUpRoFU07AWgWR0CdQZ/c32mIdX2UKGgGaAloD0MI2/eov95WcUCUhpRSlGgVTUQBaBZHQJ1CcxSHdoF1fZQoaAZoCWgPQwgFpP0PsKVyQJSGlFKUaBVNRwFoFkdAnUPLRv3rU3V9lChoBmgJaA9DCBoaTwSxKXJAlIaUUpRoFU0tAWgWR0CdRLxDb8FZdX2UKGgGaAloD0MI6N1YUJhJbECUhpRSlGgVTRwCaBZHQJ1FGHrQgLZ1fZQoaAZoCWgPQwhE/MOWXhpyQJSGlFKUaBVNVgFoFkdAnUWwM6RyO3V9lChoBmgJaA9DCI+M1ea/EnFAlIaUUpRoFU1dAWgWR0CdRhPU8V59dX2UKGgGaAloD0MIKEnXTP4KcECUhpRSlGgVTYMBaBZHQJ1H+sU7CBR1fZQoaAZoCWgPQwhXsmMjENpvQJSGlFKUaBVNMwFoFkdAnUh7N0NjLHV9lChoBmgJaA9DCDfjNERV7HBAlIaUUpRoFU1LAWgWR0CdSc0btJFtdX2UKGgGaAloD0MIT1jiAaUscUCUhpRSlGgVTTMBaBZHQJ1KXhS9/SZ1fZQoaAZoCWgPQwjThy6or1JxQJSGlFKUaBVNFAFoFkdAnUrIWP91l3V9lChoBmgJaA9DCD4jERpBE3JAlIaUUpRoFU1XAWgWR0CdTGAe7tiQdX2UKGgGaAloD0MIVd/5RQlsbUCUhpRSlGgVTZ8BaBZHQJ1NI7GNrCZ1fZQoaAZoCWgPQwhwQ4zXvH1vQJSGlFKUaBVNJQFoFkdAnU37cGkeqHV9lChoBmgJaA9DCOS7lLpk029AlIaUUpRoFU1RAWgWR0CdTm052hZhdX2UKGgGaAloD0MIbOun/6wlckCUhpRSlGgVTUUBaBZHQJ1O0tkFwDN1fZQoaAZoCWgPQwguyJbl6ydvQJSGlFKUaBVNKgFoFkdAnU77HIZIhHV9lChoBmgJaA9DCBAf2PFfTHJAlIaUUpRoFU1NAWgWR0CdUY55qubJdX2UKGgGaAloD0MI3GW/7nS+cUCUhpRSlGgVTT8BaBZHQJ1R1xwQ1791fZQoaAZoCWgPQwhKQiJtYzdsQJSGlFKUaBVNKwFoFkdAnVJaubI91XV9lChoBmgJaA9DCM1WXvK/E3BAlIaUUpRoFU03AWgWR0CdUnGRFI/adX2UKGgGaAloD0MIm64nuu6AckCUhpRSlGgVTUIBaBZHQJ1VKGZeAut1fZQoaAZoCWgPQwhD5V/LK0luQJSGlFKUaBVNPgFoFkdAnVWNS/CZW3V9lChoBmgJaA9DCD5ZMVwdunFAlIaUUpRoFU0eAWgWR0CdVieAd4mkdX2UKGgGaAloD0MIMgOV8e8pbUCUhpRSlGgVTT4BaBZHQJ1W6xbB42V1fZQoaAZoCWgPQwhAwjBgSSxxQJSGlFKUaBVNsQFoFkdAnVb4jSofjnV9lChoBmgJaA9DCJi/QuZKZnFAlIaUUpRoFU0YAWgWR0CdWIWszVMFdX2UKGgGaAloD0MIWOatuo7cb0CUhpRSlGgVTU8BaBZHQJ1YkKD01651fZQoaAZoCWgPQwjfMxKhEVVsQJSGlFKUaBVNQQFoFkdAnVlm9g4OtnV9lChoBmgJaA9DCOrNqPmqL29AlIaUUpRoFU1fAmgWR0CdnfosI3R5dX2UKGgGaAloD0MIU1vqIK8MYkCUhpRSlGgVTegDaBZHQJ25bEYO2Ap1fZQoaAZoCWgPQwi+M9qqJKxaQJSGlFKUaBVN6ANoFkdAnbqT+m3vyHV9lChoBmgJaA9DCLzOhvwzqmBAlIaUUpRoFU3oA2gWR0Cdu6KE384xdX2UKGgGaAloD0MINpNvtrmhW0CUhpRSlGgVTegDaBZHQJ272rksBhh1fZQoaAZoCWgPQwhqTfOOUyZdQJSGlFKUaBVN6ANoFkdAncG0OmR/3HV9lChoBmgJaA9DCDl/EwqRz2FAlIaUUpRoFU3oA2gWR0CdwldlNDc/dX2UKGgGaAloD0MIw5rKorAaVUCUhpRSlGgVTegDaBZHQJ3DYwIt16p1fZQoaAZoCWgPQwgjaMwk6oxaQJSGlFKUaBVN6ANoFkdAncN/+S8rZ3V9lChoBmgJaA9DCDuL3qmAQlhAlIaUUpRoFU3oA2gWR0CdyFAhB7eEdX2UKGgGaAloD0MI7UeKyLCDWUCUhpRSlGgVTegDaBZHQJ3JJwBHTZx1fZQoaAZoCWgPQwhQFymUhbNaQJSGlFKUaBVN6ANoFkdAncodDQZ4wHV9lChoBmgJaA9DCPJ9calKf1pAlIaUUpRoFU3oA2gWR0Cdyi04zabndX2UKGgGaAloD0MIirDh6RVyYECUhpRSlGgVTegDaBZHQJ3MBjd56dF1fZQoaAZoCWgPQwh7MZQT7chcQJSGlFKUaBVN6ANoFkdAncwSmEXcg3V9lChoBmgJaA9DCPg1kgThVlxAlIaUUpRoFU3oA2gWR0CdzP7zTWoWdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68986cfdf0be6e8216aa2af0ecd727034ba1aa1290c9aeb585c490edef9cd275
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3465f22c8bd065f986e22cad3c8f9fb56a21831473543018ea5c7f9c68c902b7
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (208 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 248.93261970790317, "std_reward": 15.941729477149417, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T07:57:47.249182"}