Push LunarLander-v2 model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 248.93 +/- 15.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9819968160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f98199681f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9819968280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9819968310>", "_build": "<function ActorCriticPolicy._build at 0x7f98199683a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9819968430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f98199684c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9819968550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f98199685e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9819968670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9819968700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9819968790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f98199618d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675754989085730459, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZ+yT1SfpK7+m64PB3NDDwYVvy8GHrwPAAAgD8AAIA/mgZcvTPXNT96g+872qt3vtulD7zixCc9AAAAAAAAAACa3as9XBskukaHJL1it2q9ek8/uqRmBr0AAAAAAAAAAABNvzznVVE/WBZgPeO0o74jgti8ZwcWPAAAAAAAAAAAGllcvj4h7D4vTQg+z9V3vn4yVL1dRLk9AAAAAAAAAACab6E9BVmWu+5Rv70wYBe+aqCMPF+AuT0AAAAAAACAP5pz3j2M8bM+NjcivbC5k74JbM28EFd3vQAAAAAAAAAAZiYevI4Egj0Kpiy9QQAWvrypHb3umLg9AAAAAAAAAACa+pK9WfmiPo0WbD5VFAO+9htzPdZJlDwAAAAAAAAAANpvgb27GVo/bGIsPXerrr6D6Pm9aLayPAAAAAAAAAAATceFPSkcBLq1r866nG6LuVh5njvS7AQ6AACAPwAAgD8aVVc924nGPTs9Vj10ZnS+aqASPeR1mrwAAAAAAAAAAM1PNT0pMEG62MkCt+8zIbE+vFI6GrcWNgAAgD8AAIA/ZuX9PcOAOD94PVC9vY6SvnwBCT0qiSa+AAAAAAAAAADNCiK8cWkeOliyvzvMLJo4J++Tuj0kpDcAAIA/AACAP2ap6Dz2EiM7CaSxvAW79TykEnS7TiWuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1xNdF36UcUCUhpRSlIwBbJRNLQGMAXSUR0Cc+3I6Kcd6dX2UKGgGaAloD0MIVkj5SbWmcECUhpRSlGgVTUkBaBZHQJz7zVbzK9x1fZQoaAZoCWgPQwhZUu4+x3NyQJSGlFKUaBVNLQFoFkdAnPvbmdRR/HV9lChoBmgJaA9DCNEjRs+tEWtAlIaUUpRoFU1AAWgWR0Cc/BueBg/kdX2UKGgGaAloD0MIxYzw9iAvc0CUhpRSlGgVTQIBaBZHQJz97DBMzuZ1fZQoaAZoCWgPQwhZTkLpi1ZuQJSGlFKUaBVNMAFoFkdAnP4A79ycTnV9lChoBmgJaA9DCBPU8C2sWHFAlIaUUpRoFU00AWgWR0Cc/0eLehwmdX2UKGgGaAloD0MIwono19ZvA0CUhpRSlGgVS/FoFkdAnP9ha9sabXV9lChoBmgJaA9DCDuqmiBqpnNAlIaUUpRoFU0FAWgWR0CdABHXVbzLdX2UKGgGaAloD0MIE/OspJUyc0CUhpRSlGgVTSIBaBZHQJ0AFHuqm0p1fZQoaAZoCWgPQwjZCpqWWN1wQJSGlFKUaBVNMwFoFkdAnQA41k1/D3V9lChoBmgJaA9DCAExCRcygnFAlIaUUpRoFU1KAWgWR0CdAIaGpMpPdX2UKGgGaAloD0MIoKnXLQJbOECUhpRSlGgVS/VoFkdAnQC+YlY2bXV9lChoBmgJaA9DCBy1wvS94W1AlIaUUpRoFU0iAWgWR0CdAy3FUADJdX2UKGgGaAloD0MIigJ9Io8jc0CUhpRSlGgVTWIBaBZHQJ0ERWRzRx91fZQoaAZoCWgPQwhuUtFYe/xxQJSGlFKUaBVNTAFoFkdAnQRn5JsfrHV9lChoBmgJaA9DCN1dZ0O+l3FAlIaUUpRoFU0SAWgWR0CdBdl0YCQtdX2UKGgGaAloD0MI5+EEptPucECUhpRSlGgVTSEBaBZHQJ0GG/ag2611fZQoaAZoCWgPQwhLBoAqrglwQJSGlFKUaBVNLgFoFkdAnQbUKNQ0oHV9lChoBmgJaA9DCETf3cqSSHBAlIaUUpRoFU1NAWgWR0CdCF7aIvaldX2UKGgGaAloD0MIiC8TRcjucECUhpRSlGgVTUIBaBZHQJ0KOaAnUlR1fZQoaAZoCWgPQwgracU3VLBxQJSGlFKUaBVNKAFoFkdAnQq9NWU8m3V9lChoBmgJaA9DCKuy74og2nBAlIaUUpRoFU1gAWgWR0CdC3/J/5LzdX2UKGgGaAloD0MIC5krg2olckCUhpRSlGgVTT8BaBZHQJ0Mn+WGATZ1fZQoaAZoCWgPQwi0q5DyEz9yQJSGlFKUaBVNLgFoFkdAnQzMNpdrwnV9lChoBmgJaA9DCD8Cf/i51HFAlIaUUpRoFU1EAWgWR0CdDQSiM5wPdX2UKGgGaAloD0MIzlSIR6IQckCUhpRSlGgVTV4BaBZHQJ0NBikO7QN1fZQoaAZoCWgPQwi2heelIgpxQJSGlFKUaBVNVwFoFkdAnQ4UHdGiH3V9lChoBmgJaA9DCMBeYcF9R21AlIaUUpRoFU16AWgWR0CdDuEx7AtWdX2UKGgGaAloD0MI/DbEeE13b0CUhpRSlGgVTUoBaBZHQJ0QZ42S+xp1fZQoaAZoCWgPQwhQcodNJNlwQJSGlFKUaBVNHwFoFkdAnRGdr9ETg3V9lChoBmgJaA9DCBXgu83bqXFAlIaUUpRoFU1NAWgWR0CdEb0Cih38dX2UKGgGaAloD0MILbMIxRYOcECUhpRSlGgVTV0BaBZHQJ0SKwIMSbp1fZQoaAZoCWgPQwjd6jnpfX1tQJSGlFKUaBVNIAFoFkdAnRJcSoOx0XV9lChoBmgJaA9DCEkT7wBPCm1AlIaUUpRoFU08AWgWR0CdEmfa6BiDdX2UKGgGaAloD0MInZ/iOLCgcECUhpRSlGgVTUQBaBZHQJ0s/N4Z/Ct1fZQoaAZoCWgPQwjp1JXPMjJxQJSGlFKUaBVNIwFoFkdAnS2Tg62fCnV9lChoBmgJaA9DCH0kJT2M5XBAlIaUUpRoFU07AWgWR0CdL9khib2EdX2UKGgGaAloD0MIJNV3fpHicECUhpRSlGgVTScBaBZHQJ0xlUwSJ0p1fZQoaAZoCWgPQwiFPljGRs9wQJSGlFKUaBVNNwFoFkdAnTJLGm1pkHV9lChoBmgJaA9DCCP1nsrpp29AlIaUUpRoFU0sAWgWR0CdMkLQXyiFdX2UKGgGaAloD0MI02pI3GMxNECUhpRSlGgVS+xoFkdAnTQMjFAE+3V9lChoBmgJaA9DCNegL7097HBAlIaUUpRoFU1KAWgWR0CdNgEd/8VIdX2UKGgGaAloD0MIMSO8PYibcUCUhpRSlGgVTTcBaBZHQJ02PLSuyNZ1fZQoaAZoCWgPQwj6RnTPuqJwQJSGlFKUaBVNcAFoFkdAnTavT5O8CnV9lChoBmgJaA9DCPDC1mwl6XBAlIaUUpRoFU2bAWgWR0CdNyRPoFFEdX2UKGgGaAloD0MI7YLBNXeKbkCUhpRSlGgVTVEBaBZHQJ07Sa5PM0R1fZQoaAZoCWgPQwiE2QQYllNzQJSGlFKUaBVNPgFoFkdAnTtiEcsDn3V9lChoBmgJaA9DCJOq7SY423FAlIaUUpRoFU1WAWgWR0CdO6FbFCLNdX2UKGgGaAloD0MINlzkni5pcECUhpRSlGgVTR8BaBZHQJ09OUOd5IJ1fZQoaAZoCWgPQwhTz4JQXuhtQJSGlFKUaBVNegFoFkdAnT2zsdDIBHV9lChoBmgJaA9DCPm7d9RYbHBAlIaUUpRoFU0/AWgWR0CdPvspG4I9dX2UKGgGaAloD0MInnsPl9xCcUCUhpRSlGgVTRABaBZHQJ1AI+r2g391fZQoaAZoCWgPQwi94T5yq8NxQJSGlFKUaBVNSwFoFkdAnUEzVhCtzXV9lChoBmgJaA9DCOOON/ntDHFAlIaUUpRoFU07AWgWR0CdQZ/c32mIdX2UKGgGaAloD0MI2/eov95WcUCUhpRSlGgVTUQBaBZHQJ1CcxSHdoF1fZQoaAZoCWgPQwgFpP0PsKVyQJSGlFKUaBVNRwFoFkdAnUPLRv3rU3V9lChoBmgJaA9DCBoaTwSxKXJAlIaUUpRoFU0tAWgWR0CdRLxDb8FZdX2UKGgGaAloD0MI6N1YUJhJbECUhpRSlGgVTRwCaBZHQJ1FGHrQgLZ1fZQoaAZoCWgPQwhE/MOWXhpyQJSGlFKUaBVNVgFoFkdAnUWwM6RyO3V9lChoBmgJaA9DCI+M1ea/EnFAlIaUUpRoFU1dAWgWR0CdRhPU8V59dX2UKGgGaAloD0MIKEnXTP4KcECUhpRSlGgVTYMBaBZHQJ1H+sU7CBR1fZQoaAZoCWgPQwhXsmMjENpvQJSGlFKUaBVNMwFoFkdAnUh7N0NjLHV9lChoBmgJaA9DCDfjNERV7HBAlIaUUpRoFU1LAWgWR0CdSc0btJFtdX2UKGgGaAloD0MIT1jiAaUscUCUhpRSlGgVTTMBaBZHQJ1KXhS9/SZ1fZQoaAZoCWgPQwjThy6or1JxQJSGlFKUaBVNFAFoFkdAnUrIWP91l3V9lChoBmgJaA9DCD4jERpBE3JAlIaUUpRoFU1XAWgWR0CdTGAe7tiQdX2UKGgGaAloD0MIVd/5RQlsbUCUhpRSlGgVTZ8BaBZHQJ1NI7GNrCZ1fZQoaAZoCWgPQwhwQ4zXvH1vQJSGlFKUaBVNJQFoFkdAnU37cGkeqHV9lChoBmgJaA9DCOS7lLpk029AlIaUUpRoFU1RAWgWR0CdTm052hZhdX2UKGgGaAloD0MIbOun/6wlckCUhpRSlGgVTUUBaBZHQJ1O0tkFwDN1fZQoaAZoCWgPQwguyJbl6ydvQJSGlFKUaBVNKgFoFkdAnU77HIZIhHV9lChoBmgJaA9DCBAf2PFfTHJAlIaUUpRoFU1NAWgWR0CdUY55qubJdX2UKGgGaAloD0MI3GW/7nS+cUCUhpRSlGgVTT8BaBZHQJ1R1xwQ1791fZQoaAZoCWgPQwhKQiJtYzdsQJSGlFKUaBVNKwFoFkdAnVJaubI91XV9lChoBmgJaA9DCM1WXvK/E3BAlIaUUpRoFU03AWgWR0CdUnGRFI/adX2UKGgGaAloD0MIm64nuu6AckCUhpRSlGgVTUIBaBZHQJ1VKGZeAut1fZQoaAZoCWgPQwhD5V/LK0luQJSGlFKUaBVNPgFoFkdAnVWNS/CZW3V9lChoBmgJaA9DCD5ZMVwdunFAlIaUUpRoFU0eAWgWR0CdVieAd4mkdX2UKGgGaAloD0MIMgOV8e8pbUCUhpRSlGgVTT4BaBZHQJ1W6xbB42V1fZQoaAZoCWgPQwhAwjBgSSxxQJSGlFKUaBVNsQFoFkdAnVb4jSofjnV9lChoBmgJaA9DCJi/QuZKZnFAlIaUUpRoFU0YAWgWR0CdWIWszVMFdX2UKGgGaAloD0MIWOatuo7cb0CUhpRSlGgVTU8BaBZHQJ1YkKD01651fZQoaAZoCWgPQwjfMxKhEVVsQJSGlFKUaBVNQQFoFkdAnVlm9g4OtnV9lChoBmgJaA9DCOrNqPmqL29AlIaUUpRoFU1fAmgWR0CdnfosI3R5dX2UKGgGaAloD0MIU1vqIK8MYkCUhpRSlGgVTegDaBZHQJ25bEYO2Ap1fZQoaAZoCWgPQwi+M9qqJKxaQJSGlFKUaBVN6ANoFkdAnbqT+m3vyHV9lChoBmgJaA9DCLzOhvwzqmBAlIaUUpRoFU3oA2gWR0Cdu6KE384xdX2UKGgGaAloD0MINpNvtrmhW0CUhpRSlGgVTegDaBZHQJ272rksBhh1fZQoaAZoCWgPQwhqTfOOUyZdQJSGlFKUaBVN6ANoFkdAncG0OmR/3HV9lChoBmgJaA9DCDl/EwqRz2FAlIaUUpRoFU3oA2gWR0CdwldlNDc/dX2UKGgGaAloD0MIw5rKorAaVUCUhpRSlGgVTegDaBZHQJ3DYwIt16p1fZQoaAZoCWgPQwgjaMwk6oxaQJSGlFKUaBVN6ANoFkdAncN/+S8rZ3V9lChoBmgJaA9DCDuL3qmAQlhAlIaUUpRoFU3oA2gWR0CdyFAhB7eEdX2UKGgGaAloD0MI7UeKyLCDWUCUhpRSlGgVTegDaBZHQJ3JJwBHTZx1fZQoaAZoCWgPQwhQFymUhbNaQJSGlFKUaBVN6ANoFkdAncodDQZ4wHV9lChoBmgJaA9DCPJ9calKf1pAlIaUUpRoFU3oA2gWR0Cdyi04zabndX2UKGgGaAloD0MIirDh6RVyYECUhpRSlGgVTegDaBZHQJ3MBjd56dF1fZQoaAZoCWgPQwh7MZQT7chcQJSGlFKUaBVN6ANoFkdAncwSmEXcg3V9lChoBmgJaA9DCPg1kgThVlxAlIaUUpRoFU3oA2gWR0CdzP7zTWoWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:277fca26accadec01a16cb5fa56ea51996fdb04c26a1e414fd0f873b6139935f
|
3 |
+
size 147420
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9819968160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f98199681f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9819968280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9819968310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f98199683a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9819968430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f98199684c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9819968550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f98199685e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9819968670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9819968700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9819968790>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f98199618d0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675754989085730459,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZ+yT1SfpK7+m64PB3NDDwYVvy8GHrwPAAAgD8AAIA/mgZcvTPXNT96g+872qt3vtulD7zixCc9AAAAAAAAAACa3as9XBskukaHJL1it2q9ek8/uqRmBr0AAAAAAAAAAABNvzznVVE/WBZgPeO0o74jgti8ZwcWPAAAAAAAAAAAGllcvj4h7D4vTQg+z9V3vn4yVL1dRLk9AAAAAAAAAACab6E9BVmWu+5Rv70wYBe+aqCMPF+AuT0AAAAAAACAP5pz3j2M8bM+NjcivbC5k74JbM28EFd3vQAAAAAAAAAAZiYevI4Egj0Kpiy9QQAWvrypHb3umLg9AAAAAAAAAACa+pK9WfmiPo0WbD5VFAO+9htzPdZJlDwAAAAAAAAAANpvgb27GVo/bGIsPXerrr6D6Pm9aLayPAAAAAAAAAAATceFPSkcBLq1r866nG6LuVh5njvS7AQ6AACAPwAAgD8aVVc924nGPTs9Vj10ZnS+aqASPeR1mrwAAAAAAAAAAM1PNT0pMEG62MkCt+8zIbE+vFI6GrcWNgAAgD8AAIA/ZuX9PcOAOD94PVC9vY6SvnwBCT0qiSa+AAAAAAAAAADNCiK8cWkeOliyvzvMLJo4J++Tuj0kpDcAAIA/AACAP2ap6Dz2EiM7CaSxvAW79TykEnS7TiWuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1xNdF36UcUCUhpRSlIwBbJRNLQGMAXSUR0Cc+3I6Kcd6dX2UKGgGaAloD0MIVkj5SbWmcECUhpRSlGgVTUkBaBZHQJz7zVbzK9x1fZQoaAZoCWgPQwhZUu4+x3NyQJSGlFKUaBVNLQFoFkdAnPvbmdRR/HV9lChoBmgJaA9DCNEjRs+tEWtAlIaUUpRoFU1AAWgWR0Cc/BueBg/kdX2UKGgGaAloD0MIxYzw9iAvc0CUhpRSlGgVTQIBaBZHQJz97DBMzuZ1fZQoaAZoCWgPQwhZTkLpi1ZuQJSGlFKUaBVNMAFoFkdAnP4A79ycTnV9lChoBmgJaA9DCBPU8C2sWHFAlIaUUpRoFU00AWgWR0Cc/0eLehwmdX2UKGgGaAloD0MIwono19ZvA0CUhpRSlGgVS/FoFkdAnP9ha9sabXV9lChoBmgJaA9DCDuqmiBqpnNAlIaUUpRoFU0FAWgWR0CdABHXVbzLdX2UKGgGaAloD0MIE/OspJUyc0CUhpRSlGgVTSIBaBZHQJ0AFHuqm0p1fZQoaAZoCWgPQwjZCpqWWN1wQJSGlFKUaBVNMwFoFkdAnQA41k1/D3V9lChoBmgJaA9DCAExCRcygnFAlIaUUpRoFU1KAWgWR0CdAIaGpMpPdX2UKGgGaAloD0MIoKnXLQJbOECUhpRSlGgVS/VoFkdAnQC+YlY2bXV9lChoBmgJaA9DCBy1wvS94W1AlIaUUpRoFU0iAWgWR0CdAy3FUADJdX2UKGgGaAloD0MIigJ9Io8jc0CUhpRSlGgVTWIBaBZHQJ0ERWRzRx91fZQoaAZoCWgPQwhuUtFYe/xxQJSGlFKUaBVNTAFoFkdAnQRn5JsfrHV9lChoBmgJaA9DCN1dZ0O+l3FAlIaUUpRoFU0SAWgWR0CdBdl0YCQtdX2UKGgGaAloD0MI5+EEptPucECUhpRSlGgVTSEBaBZHQJ0GG/ag2611fZQoaAZoCWgPQwhLBoAqrglwQJSGlFKUaBVNLgFoFkdAnQbUKNQ0oHV9lChoBmgJaA9DCETf3cqSSHBAlIaUUpRoFU1NAWgWR0CdCF7aIvaldX2UKGgGaAloD0MIiC8TRcjucECUhpRSlGgVTUIBaBZHQJ0KOaAnUlR1fZQoaAZoCWgPQwgracU3VLBxQJSGlFKUaBVNKAFoFkdAnQq9NWU8m3V9lChoBmgJaA9DCKuy74og2nBAlIaUUpRoFU1gAWgWR0CdC3/J/5LzdX2UKGgGaAloD0MIC5krg2olckCUhpRSlGgVTT8BaBZHQJ0Mn+WGATZ1fZQoaAZoCWgPQwi0q5DyEz9yQJSGlFKUaBVNLgFoFkdAnQzMNpdrwnV9lChoBmgJaA9DCD8Cf/i51HFAlIaUUpRoFU1EAWgWR0CdDQSiM5wPdX2UKGgGaAloD0MIzlSIR6IQckCUhpRSlGgVTV4BaBZHQJ0NBikO7QN1fZQoaAZoCWgPQwi2heelIgpxQJSGlFKUaBVNVwFoFkdAnQ4UHdGiH3V9lChoBmgJaA9DCMBeYcF9R21AlIaUUpRoFU16AWgWR0CdDuEx7AtWdX2UKGgGaAloD0MI/DbEeE13b0CUhpRSlGgVTUoBaBZHQJ0QZ42S+xp1fZQoaAZoCWgPQwhQcodNJNlwQJSGlFKUaBVNHwFoFkdAnRGdr9ETg3V9lChoBmgJaA9DCBXgu83bqXFAlIaUUpRoFU1NAWgWR0CdEb0Cih38dX2UKGgGaAloD0MILbMIxRYOcECUhpRSlGgVTV0BaBZHQJ0SKwIMSbp1fZQoaAZoCWgPQwjd6jnpfX1tQJSGlFKUaBVNIAFoFkdAnRJcSoOx0XV9lChoBmgJaA9DCEkT7wBPCm1AlIaUUpRoFU08AWgWR0CdEmfa6BiDdX2UKGgGaAloD0MInZ/iOLCgcECUhpRSlGgVTUQBaBZHQJ0s/N4Z/Ct1fZQoaAZoCWgPQwjp1JXPMjJxQJSGlFKUaBVNIwFoFkdAnS2Tg62fCnV9lChoBmgJaA9DCH0kJT2M5XBAlIaUUpRoFU07AWgWR0CdL9khib2EdX2UKGgGaAloD0MIJNV3fpHicECUhpRSlGgVTScBaBZHQJ0xlUwSJ0p1fZQoaAZoCWgPQwiFPljGRs9wQJSGlFKUaBVNNwFoFkdAnTJLGm1pkHV9lChoBmgJaA9DCCP1nsrpp29AlIaUUpRoFU0sAWgWR0CdMkLQXyiFdX2UKGgGaAloD0MI02pI3GMxNECUhpRSlGgVS+xoFkdAnTQMjFAE+3V9lChoBmgJaA9DCNegL7097HBAlIaUUpRoFU1KAWgWR0CdNgEd/8VIdX2UKGgGaAloD0MIMSO8PYibcUCUhpRSlGgVTTcBaBZHQJ02PLSuyNZ1fZQoaAZoCWgPQwj6RnTPuqJwQJSGlFKUaBVNcAFoFkdAnTavT5O8CnV9lChoBmgJaA9DCPDC1mwl6XBAlIaUUpRoFU2bAWgWR0CdNyRPoFFEdX2UKGgGaAloD0MI7YLBNXeKbkCUhpRSlGgVTVEBaBZHQJ07Sa5PM0R1fZQoaAZoCWgPQwiE2QQYllNzQJSGlFKUaBVNPgFoFkdAnTtiEcsDn3V9lChoBmgJaA9DCJOq7SY423FAlIaUUpRoFU1WAWgWR0CdO6FbFCLNdX2UKGgGaAloD0MINlzkni5pcECUhpRSlGgVTR8BaBZHQJ09OUOd5IJ1fZQoaAZoCWgPQwhTz4JQXuhtQJSGlFKUaBVNegFoFkdAnT2zsdDIBHV9lChoBmgJaA9DCPm7d9RYbHBAlIaUUpRoFU0/AWgWR0CdPvspG4I9dX2UKGgGaAloD0MInnsPl9xCcUCUhpRSlGgVTRABaBZHQJ1AI+r2g391fZQoaAZoCWgPQwi94T5yq8NxQJSGlFKUaBVNSwFoFkdAnUEzVhCtzXV9lChoBmgJaA9DCOOON/ntDHFAlIaUUpRoFU07AWgWR0CdQZ/c32mIdX2UKGgGaAloD0MI2/eov95WcUCUhpRSlGgVTUQBaBZHQJ1CcxSHdoF1fZQoaAZoCWgPQwgFpP0PsKVyQJSGlFKUaBVNRwFoFkdAnUPLRv3rU3V9lChoBmgJaA9DCBoaTwSxKXJAlIaUUpRoFU0tAWgWR0CdRLxDb8FZdX2UKGgGaAloD0MI6N1YUJhJbECUhpRSlGgVTRwCaBZHQJ1FGHrQgLZ1fZQoaAZoCWgPQwhE/MOWXhpyQJSGlFKUaBVNVgFoFkdAnUWwM6RyO3V9lChoBmgJaA9DCI+M1ea/EnFAlIaUUpRoFU1dAWgWR0CdRhPU8V59dX2UKGgGaAloD0MIKEnXTP4KcECUhpRSlGgVTYMBaBZHQJ1H+sU7CBR1fZQoaAZoCWgPQwhXsmMjENpvQJSGlFKUaBVNMwFoFkdAnUh7N0NjLHV9lChoBmgJaA9DCDfjNERV7HBAlIaUUpRoFU1LAWgWR0CdSc0btJFtdX2UKGgGaAloD0MIT1jiAaUscUCUhpRSlGgVTTMBaBZHQJ1KXhS9/SZ1fZQoaAZoCWgPQwjThy6or1JxQJSGlFKUaBVNFAFoFkdAnUrIWP91l3V9lChoBmgJaA9DCD4jERpBE3JAlIaUUpRoFU1XAWgWR0CdTGAe7tiQdX2UKGgGaAloD0MIVd/5RQlsbUCUhpRSlGgVTZ8BaBZHQJ1NI7GNrCZ1fZQoaAZoCWgPQwhwQ4zXvH1vQJSGlFKUaBVNJQFoFkdAnU37cGkeqHV9lChoBmgJaA9DCOS7lLpk029AlIaUUpRoFU1RAWgWR0CdTm052hZhdX2UKGgGaAloD0MIbOun/6wlckCUhpRSlGgVTUUBaBZHQJ1O0tkFwDN1fZQoaAZoCWgPQwguyJbl6ydvQJSGlFKUaBVNKgFoFkdAnU77HIZIhHV9lChoBmgJaA9DCBAf2PFfTHJAlIaUUpRoFU1NAWgWR0CdUY55qubJdX2UKGgGaAloD0MI3GW/7nS+cUCUhpRSlGgVTT8BaBZHQJ1R1xwQ1791fZQoaAZoCWgPQwhKQiJtYzdsQJSGlFKUaBVNKwFoFkdAnVJaubI91XV9lChoBmgJaA9DCM1WXvK/E3BAlIaUUpRoFU03AWgWR0CdUnGRFI/adX2UKGgGaAloD0MIm64nuu6AckCUhpRSlGgVTUIBaBZHQJ1VKGZeAut1fZQoaAZoCWgPQwhD5V/LK0luQJSGlFKUaBVNPgFoFkdAnVWNS/CZW3V9lChoBmgJaA9DCD5ZMVwdunFAlIaUUpRoFU0eAWgWR0CdVieAd4mkdX2UKGgGaAloD0MIMgOV8e8pbUCUhpRSlGgVTT4BaBZHQJ1W6xbB42V1fZQoaAZoCWgPQwhAwjBgSSxxQJSGlFKUaBVNsQFoFkdAnVb4jSofjnV9lChoBmgJaA9DCJi/QuZKZnFAlIaUUpRoFU0YAWgWR0CdWIWszVMFdX2UKGgGaAloD0MIWOatuo7cb0CUhpRSlGgVTU8BaBZHQJ1YkKD01651fZQoaAZoCWgPQwjfMxKhEVVsQJSGlFKUaBVNQQFoFkdAnVlm9g4OtnV9lChoBmgJaA9DCOrNqPmqL29AlIaUUpRoFU1fAmgWR0CdnfosI3R5dX2UKGgGaAloD0MIU1vqIK8MYkCUhpRSlGgVTegDaBZHQJ25bEYO2Ap1fZQoaAZoCWgPQwi+M9qqJKxaQJSGlFKUaBVN6ANoFkdAnbqT+m3vyHV9lChoBmgJaA9DCLzOhvwzqmBAlIaUUpRoFU3oA2gWR0Cdu6KE384xdX2UKGgGaAloD0MINpNvtrmhW0CUhpRSlGgVTegDaBZHQJ272rksBhh1fZQoaAZoCWgPQwhqTfOOUyZdQJSGlFKUaBVN6ANoFkdAncG0OmR/3HV9lChoBmgJaA9DCDl/EwqRz2FAlIaUUpRoFU3oA2gWR0CdwldlNDc/dX2UKGgGaAloD0MIw5rKorAaVUCUhpRSlGgVTegDaBZHQJ3DYwIt16p1fZQoaAZoCWgPQwgjaMwk6oxaQJSGlFKUaBVN6ANoFkdAncN/+S8rZ3V9lChoBmgJaA9DCDuL3qmAQlhAlIaUUpRoFU3oA2gWR0CdyFAhB7eEdX2UKGgGaAloD0MI7UeKyLCDWUCUhpRSlGgVTegDaBZHQJ3JJwBHTZx1fZQoaAZoCWgPQwhQFymUhbNaQJSGlFKUaBVN6ANoFkdAncodDQZ4wHV9lChoBmgJaA9DCPJ9calKf1pAlIaUUpRoFU3oA2gWR0Cdyi04zabndX2UKGgGaAloD0MIirDh6RVyYECUhpRSlGgVTegDaBZHQJ3MBjd56dF1fZQoaAZoCWgPQwh7MZQT7chcQJSGlFKUaBVN6ANoFkdAncwSmEXcg3V9lChoBmgJaA9DCPg1kgThVlxAlIaUUpRoFU3oA2gWR0CdzP7zTWoWdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68986cfdf0be6e8216aa2af0ecd727034ba1aa1290c9aeb585c490edef9cd275
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3465f22c8bd065f986e22cad3c8f9fb56a21831473543018ea5c7f9c68c902b7
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (208 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 248.93261970790317, "std_reward": 15.941729477149417, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T07:57:47.249182"}
|