File size: 3,603 Bytes
09170c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
library_name: transformers
license: agpl-3.0
base_model: Delta-Vector/Holland-4B
tags:
- generated_from_trainer
model-index:
- name: outputs/out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: Delta-Vector/Holland-4B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: NewEden/xlam-function-calling-60k-shareGPT
type: sharegpt
conversation: chatml
chat_template: chatml
val_set_size: 0.01
output_dir: ./outputs/out
adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
sequence_len: 8192
# sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
wandb_project: GnX Func Calling v2
wandb_entity:
wandb_watch:
wandb_name: Func Calling GnX v2
wandb_log_model:
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00002
weight_decay: 0.05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
```
</details><br>
# outputs/out
This model is a fine-tuned version of [Delta-Vector/Holland-4B](https://huggingface.co/Delta-Vector/Holland-4B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0359
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 8
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4049 | 0.0224 | 1 | 0.5064 |
| 0.0803 | 0.2462 | 11 | 0.0692 |
| 0.0279 | 0.4923 | 22 | 0.0404 |
| 0.0294 | 0.7385 | 33 | 0.0396 |
| 0.0346 | 0.9846 | 44 | 0.0365 |
| 0.0128 | 1.2189 | 55 | 0.0375 |
| 0.0241 | 1.4650 | 66 | 0.0375 |
| 0.0134 | 1.7112 | 77 | 0.0361 |
| 0.0133 | 1.9573 | 88 | 0.0359 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|