--- library_name: transformers tags: - generated_from_trainer model-index: - name: ministral_outputs results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: ./prince-canuma_Ministral-8B-Instruct-2410-HF model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: NewEden/Story-writing-Alt-Data-sharegpt type: sharegpt conversation: chatml - path: NewEden/Misc-Phase-Sharegpt type: sharegpt conversation: chatml - path: NewEden/Synth-RP-Phase-sharegpt type: sharegpt conversation: chatml - path: NewEden/Claude-instruct-Merged-Sharegpt type: sharegpt conversation: chatml - path: NewEden/Intelligence-Phase-Sharegpt type: sharegpt conversation: chatml chat_template: chatml output_dir: ./ministral_outputs #adapter: lora #lora_r: 128 #lora_alpha: 16 #lora_dropout: 0.05 #lora_target_linear: true #peft_use_rslora: true #lora_modules_to_save: #- embed_tokens #- lm_head sequence_len: 16384 #sequence_len: 32768 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: Ministral-Tor wandb_entity: wandb_watch: wandb_name: run-1 wandb_log_model: plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: #auto_resume_from_checkpoints: true local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 30 eval_table_size: saves_per_epoch: 1 weight_decay: 0.1 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json #deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json #deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json fsdp: fsdp_config: special_tokens: pad_token: "" ```

# ministral_outputs This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1