Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +34 -0
- generation_config.json +9 -0
- latest +1 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +471 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +34 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +1757 -0
- trainer_state.json +1797 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "SillyTilly/google-gemma-2-9b",
|
3 |
+
"architectures": [
|
4 |
+
"Gemma2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"attn_logit_softcapping": 50.0,
|
9 |
+
"bos_token_id": 2,
|
10 |
+
"cache_implementation": "hybrid",
|
11 |
+
"eos_token_id": 1,
|
12 |
+
"final_logit_softcapping": 30.0,
|
13 |
+
"head_dim": 256,
|
14 |
+
"hidden_act": "gelu_pytorch_tanh",
|
15 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
16 |
+
"hidden_size": 3584,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 14336,
|
19 |
+
"max_position_embeddings": 8192,
|
20 |
+
"model_type": "gemma2",
|
21 |
+
"num_attention_heads": 16,
|
22 |
+
"num_hidden_layers": 42,
|
23 |
+
"num_key_value_heads": 8,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"query_pre_attn_scalar": 224,
|
26 |
+
"rms_norm_eps": 1e-06,
|
27 |
+
"rope_theta": 10000.0,
|
28 |
+
"sliding_window": 4096,
|
29 |
+
"sliding_window_size": 4096,
|
30 |
+
"torch_dtype": "bfloat16",
|
31 |
+
"transformers_version": "4.43.1",
|
32 |
+
"use_cache": false,
|
33 |
+
"vocab_size": 256000
|
34 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"cache_implementation": "hybrid",
|
5 |
+
"do_sample": true,
|
6 |
+
"eos_token_id": 1,
|
7 |
+
"pad_token_id": 0,
|
8 |
+
"transformers_version": "4.43.1"
|
9 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step252
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43f350fa6b3defcd2f919510f78efe28fda444be31c14edf62e58b2f63bf8f82
|
3 |
+
size 4903351912
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eebbd41dbb660a21d8e84e684970a01f7603773437c4037aa6f49689f28cf933
|
3 |
+
size 4947570872
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aaf88768c0885a3743d4f8d0f9ee1610008a8bf61ebaafb06c499eb96501725c
|
3 |
+
size 4962221464
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:157fa5bf720f890d250ae0283690abe14d478be6fe1151aca5ae91445bc0473b
|
3 |
+
size 3670322200
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 18483411968
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.13.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
140 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
141 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
142 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
143 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
144 |
+
"model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
145 |
+
"model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
148 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
149 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
150 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"model.layers.20.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"model.layers.20.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
159 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.21.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.21.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.22.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.22.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.23.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.23.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.24.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.24.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.25.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.25.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.26.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.26.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.27.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.27.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.28.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.28.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.29.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.29.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.30.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.30.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
285 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
287 |
+
"model.layers.31.post_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
288 |
+
"model.layers.31.pre_feedforward_layernorm.weight": "model-00003-of-00004.safetensors",
|
289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
291 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
292 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
293 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
294 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
295 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
296 |
+
"model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
298 |
+
"model.layers.32.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
299 |
+
"model.layers.32.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
302 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
303 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
304 |
+
"model.layers.33.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
305 |
+
"model.layers.33.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
306 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
307 |
+
"model.layers.33.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
308 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
309 |
+
"model.layers.33.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
310 |
+
"model.layers.33.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
313 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
314 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
315 |
+
"model.layers.34.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
316 |
+
"model.layers.34.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
317 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
318 |
+
"model.layers.34.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
319 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
320 |
+
"model.layers.34.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
321 |
+
"model.layers.34.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
324 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
325 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
326 |
+
"model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
327 |
+
"model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
328 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
329 |
+
"model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
330 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
331 |
+
"model.layers.35.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
332 |
+
"model.layers.35.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
335 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
336 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
337 |
+
"model.layers.36.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
338 |
+
"model.layers.36.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
339 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
340 |
+
"model.layers.36.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
341 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
342 |
+
"model.layers.36.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
343 |
+
"model.layers.36.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
344 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
346 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
347 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
348 |
+
"model.layers.37.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
349 |
+
"model.layers.37.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
350 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
351 |
+
"model.layers.37.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
352 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
353 |
+
"model.layers.37.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
354 |
+
"model.layers.37.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
355 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
356 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
357 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
358 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
359 |
+
"model.layers.38.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
360 |
+
"model.layers.38.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
361 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
362 |
+
"model.layers.38.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
363 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
364 |
+
"model.layers.38.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
365 |
+
"model.layers.38.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
366 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
367 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
368 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
369 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
370 |
+
"model.layers.39.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
371 |
+
"model.layers.39.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
372 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
373 |
+
"model.layers.39.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
374 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
375 |
+
"model.layers.39.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
376 |
+
"model.layers.39.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
377 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
378 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
379 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
380 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
381 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
382 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
384 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
386 |
+
"model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
388 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
390 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
392 |
+
"model.layers.40.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
393 |
+
"model.layers.40.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
394 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
395 |
+
"model.layers.40.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
396 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
397 |
+
"model.layers.40.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
398 |
+
"model.layers.40.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
399 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
400 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
401 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
402 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
403 |
+
"model.layers.41.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
404 |
+
"model.layers.41.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
405 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
406 |
+
"model.layers.41.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
407 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
408 |
+
"model.layers.41.post_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
409 |
+
"model.layers.41.pre_feedforward_layernorm.weight": "model-00004-of-00004.safetensors",
|
410 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
411 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
412 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
413 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
414 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
416 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
418 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
420 |
+
"model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
422 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
424 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
426 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
428 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
430 |
+
"model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00004.safetensors",
|
432 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
434 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
435 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
436 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
437 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
438 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
440 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
441 |
+
"model.layers.7.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
442 |
+
"model.layers.7.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
443 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
444 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
446 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
448 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
449 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
450 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
451 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
452 |
+
"model.layers.8.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
453 |
+
"model.layers.8.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
454 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
455 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
456 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
457 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
458 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
459 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
460 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
461 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
462 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
463 |
+
"model.layers.9.post_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
464 |
+
"model.layers.9.pre_feedforward_layernorm.weight": "model-00002-of-00004.safetensors",
|
465 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
466 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
467 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
468 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
469 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
470 |
+
}
|
471 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8d6a959372d5e0c2ea025dd26c9d0ad2046fce19352056cae8074dcbd0a6fd4
|
3 |
+
size 14512
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f68a37892a1b445d21bb35cc10bf7a058a6f9ec8c363f5ed156ff4f49d90fb6
|
3 |
+
size 14512
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27ee9dc1b818089105a4bb03c8006f95800169439e149e986e49d215385b1c98
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<start_of_turn>",
|
4 |
+
"<end_of_turn>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<bos>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": {
|
21 |
+
"content": "<pad>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"unk_token": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7da53ca29fb16f6b2489482fc0bc6a394162cdab14d12764a1755ebc583fea79
|
3 |
+
size 17518525
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
|
3 |
+
size 4241003
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<pad>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<bos>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<mask>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<2mass>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": false
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "[@BOS@]",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": false
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<unused0>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": false
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<unused1>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": false
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<unused2>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": false
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<unused3>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": false
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<unused4>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": false
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<unused5>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": false
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<unused6>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": false
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<unused7>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<unused8>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<unused9>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"17": {
|
142 |
+
"content": "<unused10>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"18": {
|
150 |
+
"content": "<unused11>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"19": {
|
158 |
+
"content": "<unused12>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"20": {
|
166 |
+
"content": "<unused13>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"21": {
|
174 |
+
"content": "<unused14>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"22": {
|
182 |
+
"content": "<unused15>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"23": {
|
190 |
+
"content": "<unused16>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"24": {
|
198 |
+
"content": "<unused17>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"25": {
|
206 |
+
"content": "<unused18>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"26": {
|
214 |
+
"content": "<unused19>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"27": {
|
222 |
+
"content": "<unused20>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"28": {
|
230 |
+
"content": "<unused21>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"29": {
|
238 |
+
"content": "<unused22>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"30": {
|
246 |
+
"content": "<unused23>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"31": {
|
254 |
+
"content": "<unused24>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"32": {
|
262 |
+
"content": "<unused25>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"33": {
|
270 |
+
"content": "<unused26>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"34": {
|
278 |
+
"content": "<unused27>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"35": {
|
286 |
+
"content": "<unused28>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"36": {
|
294 |
+
"content": "<unused29>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": false
|
300 |
+
},
|
301 |
+
"37": {
|
302 |
+
"content": "<unused30>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": false
|
308 |
+
},
|
309 |
+
"38": {
|
310 |
+
"content": "<unused31>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": false
|
316 |
+
},
|
317 |
+
"39": {
|
318 |
+
"content": "<unused32>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": false
|
324 |
+
},
|
325 |
+
"40": {
|
326 |
+
"content": "<unused33>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": false
|
332 |
+
},
|
333 |
+
"41": {
|
334 |
+
"content": "<unused34>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": false
|
340 |
+
},
|
341 |
+
"42": {
|
342 |
+
"content": "<unused35>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": false
|
348 |
+
},
|
349 |
+
"43": {
|
350 |
+
"content": "<unused36>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": false
|
356 |
+
},
|
357 |
+
"44": {
|
358 |
+
"content": "<unused37>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": false
|
364 |
+
},
|
365 |
+
"45": {
|
366 |
+
"content": "<unused38>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": false
|
372 |
+
},
|
373 |
+
"46": {
|
374 |
+
"content": "<unused39>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": false
|
380 |
+
},
|
381 |
+
"47": {
|
382 |
+
"content": "<unused40>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": false
|
388 |
+
},
|
389 |
+
"48": {
|
390 |
+
"content": "<unused41>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": false
|
396 |
+
},
|
397 |
+
"49": {
|
398 |
+
"content": "<unused42>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": false
|
404 |
+
},
|
405 |
+
"50": {
|
406 |
+
"content": "<unused43>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": false
|
412 |
+
},
|
413 |
+
"51": {
|
414 |
+
"content": "<unused44>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": false
|
420 |
+
},
|
421 |
+
"52": {
|
422 |
+
"content": "<unused45>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": false,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": false
|
428 |
+
},
|
429 |
+
"53": {
|
430 |
+
"content": "<unused46>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": false,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": false
|
436 |
+
},
|
437 |
+
"54": {
|
438 |
+
"content": "<unused47>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": false
|
444 |
+
},
|
445 |
+
"55": {
|
446 |
+
"content": "<unused48>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": false,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": false
|
452 |
+
},
|
453 |
+
"56": {
|
454 |
+
"content": "<unused49>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": false,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": false
|
460 |
+
},
|
461 |
+
"57": {
|
462 |
+
"content": "<unused50>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": false,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": false
|
468 |
+
},
|
469 |
+
"58": {
|
470 |
+
"content": "<unused51>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": false,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": false
|
476 |
+
},
|
477 |
+
"59": {
|
478 |
+
"content": "<unused52>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": false,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": false
|
484 |
+
},
|
485 |
+
"60": {
|
486 |
+
"content": "<unused53>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": false,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": false
|
492 |
+
},
|
493 |
+
"61": {
|
494 |
+
"content": "<unused54>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": false,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": false
|
500 |
+
},
|
501 |
+
"62": {
|
502 |
+
"content": "<unused55>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": false,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": false
|
508 |
+
},
|
509 |
+
"63": {
|
510 |
+
"content": "<unused56>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": false,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": false
|
516 |
+
},
|
517 |
+
"64": {
|
518 |
+
"content": "<unused57>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": false,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": false
|
524 |
+
},
|
525 |
+
"65": {
|
526 |
+
"content": "<unused58>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": false,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": false
|
532 |
+
},
|
533 |
+
"66": {
|
534 |
+
"content": "<unused59>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": false,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": false
|
540 |
+
},
|
541 |
+
"67": {
|
542 |
+
"content": "<unused60>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": false,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": false
|
548 |
+
},
|
549 |
+
"68": {
|
550 |
+
"content": "<unused61>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": false,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": false
|
556 |
+
},
|
557 |
+
"69": {
|
558 |
+
"content": "<unused62>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": false,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": false
|
564 |
+
},
|
565 |
+
"70": {
|
566 |
+
"content": "<unused63>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": false,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": false
|
572 |
+
},
|
573 |
+
"71": {
|
574 |
+
"content": "<unused64>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": false,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": false
|
580 |
+
},
|
581 |
+
"72": {
|
582 |
+
"content": "<unused65>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": false,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": false
|
588 |
+
},
|
589 |
+
"73": {
|
590 |
+
"content": "<unused66>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": false,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": false
|
596 |
+
},
|
597 |
+
"74": {
|
598 |
+
"content": "<unused67>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": false,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": false
|
604 |
+
},
|
605 |
+
"75": {
|
606 |
+
"content": "<unused68>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": false,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": false
|
612 |
+
},
|
613 |
+
"76": {
|
614 |
+
"content": "<unused69>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": false,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": false
|
620 |
+
},
|
621 |
+
"77": {
|
622 |
+
"content": "<unused70>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": false,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": false
|
628 |
+
},
|
629 |
+
"78": {
|
630 |
+
"content": "<unused71>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": false,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": false
|
636 |
+
},
|
637 |
+
"79": {
|
638 |
+
"content": "<unused72>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": false,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": false
|
644 |
+
},
|
645 |
+
"80": {
|
646 |
+
"content": "<unused73>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": false,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": false
|
652 |
+
},
|
653 |
+
"81": {
|
654 |
+
"content": "<unused74>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": false,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": false
|
660 |
+
},
|
661 |
+
"82": {
|
662 |
+
"content": "<unused75>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": false,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": false
|
668 |
+
},
|
669 |
+
"83": {
|
670 |
+
"content": "<unused76>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": false,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": false
|
676 |
+
},
|
677 |
+
"84": {
|
678 |
+
"content": "<unused77>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": false,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": false
|
684 |
+
},
|
685 |
+
"85": {
|
686 |
+
"content": "<unused78>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": false,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": false
|
692 |
+
},
|
693 |
+
"86": {
|
694 |
+
"content": "<unused79>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": false,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": false
|
700 |
+
},
|
701 |
+
"87": {
|
702 |
+
"content": "<unused80>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": false,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": false
|
708 |
+
},
|
709 |
+
"88": {
|
710 |
+
"content": "<unused81>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": false,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": false
|
716 |
+
},
|
717 |
+
"89": {
|
718 |
+
"content": "<unused82>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": false,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": false
|
724 |
+
},
|
725 |
+
"90": {
|
726 |
+
"content": "<unused83>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": false,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": false
|
732 |
+
},
|
733 |
+
"91": {
|
734 |
+
"content": "<unused84>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": false,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": false
|
740 |
+
},
|
741 |
+
"92": {
|
742 |
+
"content": "<unused85>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": false,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": false
|
748 |
+
},
|
749 |
+
"93": {
|
750 |
+
"content": "<unused86>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": false,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": false
|
756 |
+
},
|
757 |
+
"94": {
|
758 |
+
"content": "<unused87>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": false,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": false
|
764 |
+
},
|
765 |
+
"95": {
|
766 |
+
"content": "<unused88>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": false,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": false
|
772 |
+
},
|
773 |
+
"96": {
|
774 |
+
"content": "<unused89>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": false,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": false
|
780 |
+
},
|
781 |
+
"97": {
|
782 |
+
"content": "<unused90>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": false,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": false
|
788 |
+
},
|
789 |
+
"98": {
|
790 |
+
"content": "<unused91>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": false,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": false
|
796 |
+
},
|
797 |
+
"99": {
|
798 |
+
"content": "<unused92>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": false,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": false
|
804 |
+
},
|
805 |
+
"100": {
|
806 |
+
"content": "<unused93>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": false,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": false
|
812 |
+
},
|
813 |
+
"101": {
|
814 |
+
"content": "<unused94>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": false,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": false
|
820 |
+
},
|
821 |
+
"102": {
|
822 |
+
"content": "<unused95>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": false,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": false
|
828 |
+
},
|
829 |
+
"103": {
|
830 |
+
"content": "<unused96>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": false,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": false
|
836 |
+
},
|
837 |
+
"104": {
|
838 |
+
"content": "<unused97>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": false,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": false
|
844 |
+
},
|
845 |
+
"105": {
|
846 |
+
"content": "<unused98>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": false,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": false
|
852 |
+
},
|
853 |
+
"106": {
|
854 |
+
"content": "<start_of_turn>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": false,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": true
|
860 |
+
},
|
861 |
+
"107": {
|
862 |
+
"content": "<end_of_turn>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": false,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": true
|
868 |
+
},
|
869 |
+
"108": {
|
870 |
+
"content": "\n",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": false,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": false
|
876 |
+
},
|
877 |
+
"109": {
|
878 |
+
"content": "\n\n",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": false,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": false
|
884 |
+
},
|
885 |
+
"110": {
|
886 |
+
"content": "\n\n\n",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": false,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": false
|
892 |
+
},
|
893 |
+
"111": {
|
894 |
+
"content": "\n\n\n\n",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": false,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": false
|
900 |
+
},
|
901 |
+
"112": {
|
902 |
+
"content": "\n\n\n\n\n",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": false,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": false
|
908 |
+
},
|
909 |
+
"113": {
|
910 |
+
"content": "\n\n\n\n\n\n",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": false,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": false
|
916 |
+
},
|
917 |
+
"114": {
|
918 |
+
"content": "\n\n\n\n\n\n\n",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": false,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": false
|
924 |
+
},
|
925 |
+
"115": {
|
926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": false,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": false
|
932 |
+
},
|
933 |
+
"116": {
|
934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": false,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": false
|
940 |
+
},
|
941 |
+
"117": {
|
942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": false,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": false
|
948 |
+
},
|
949 |
+
"118": {
|
950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": false,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": false
|
956 |
+
},
|
957 |
+
"119": {
|
958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": false,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": false
|
964 |
+
},
|
965 |
+
"120": {
|
966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": false,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": false
|
972 |
+
},
|
973 |
+
"121": {
|
974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": false,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": false
|
980 |
+
},
|
981 |
+
"122": {
|
982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": false,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": false
|
988 |
+
},
|
989 |
+
"123": {
|
990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": false,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": false
|
996 |
+
},
|
997 |
+
"124": {
|
998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": false,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": false
|
1004 |
+
},
|
1005 |
+
"125": {
|
1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": false,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": false
|
1012 |
+
},
|
1013 |
+
"126": {
|
1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1015 |
+
"lstrip": false,
|
1016 |
+
"normalized": false,
|
1017 |
+
"rstrip": false,
|
1018 |
+
"single_word": false,
|
1019 |
+
"special": false
|
1020 |
+
},
|
1021 |
+
"127": {
|
1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1023 |
+
"lstrip": false,
|
1024 |
+
"normalized": false,
|
1025 |
+
"rstrip": false,
|
1026 |
+
"single_word": false,
|
1027 |
+
"special": false
|
1028 |
+
},
|
1029 |
+
"128": {
|
1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1031 |
+
"lstrip": false,
|
1032 |
+
"normalized": false,
|
1033 |
+
"rstrip": false,
|
1034 |
+
"single_word": false,
|
1035 |
+
"special": false
|
1036 |
+
},
|
1037 |
+
"129": {
|
1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1039 |
+
"lstrip": false,
|
1040 |
+
"normalized": false,
|
1041 |
+
"rstrip": false,
|
1042 |
+
"single_word": false,
|
1043 |
+
"special": false
|
1044 |
+
},
|
1045 |
+
"130": {
|
1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1047 |
+
"lstrip": false,
|
1048 |
+
"normalized": false,
|
1049 |
+
"rstrip": false,
|
1050 |
+
"single_word": false,
|
1051 |
+
"special": false
|
1052 |
+
},
|
1053 |
+
"131": {
|
1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": false,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false,
|
1059 |
+
"special": false
|
1060 |
+
},
|
1061 |
+
"132": {
|
1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1063 |
+
"lstrip": false,
|
1064 |
+
"normalized": false,
|
1065 |
+
"rstrip": false,
|
1066 |
+
"single_word": false,
|
1067 |
+
"special": false
|
1068 |
+
},
|
1069 |
+
"133": {
|
1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1071 |
+
"lstrip": false,
|
1072 |
+
"normalized": false,
|
1073 |
+
"rstrip": false,
|
1074 |
+
"single_word": false,
|
1075 |
+
"special": false
|
1076 |
+
},
|
1077 |
+
"134": {
|
1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1079 |
+
"lstrip": false,
|
1080 |
+
"normalized": false,
|
1081 |
+
"rstrip": false,
|
1082 |
+
"single_word": false,
|
1083 |
+
"special": false
|
1084 |
+
},
|
1085 |
+
"135": {
|
1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1087 |
+
"lstrip": false,
|
1088 |
+
"normalized": false,
|
1089 |
+
"rstrip": false,
|
1090 |
+
"single_word": false,
|
1091 |
+
"special": false
|
1092 |
+
},
|
1093 |
+
"136": {
|
1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1095 |
+
"lstrip": false,
|
1096 |
+
"normalized": false,
|
1097 |
+
"rstrip": false,
|
1098 |
+
"single_word": false,
|
1099 |
+
"special": false
|
1100 |
+
},
|
1101 |
+
"137": {
|
1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1103 |
+
"lstrip": false,
|
1104 |
+
"normalized": false,
|
1105 |
+
"rstrip": false,
|
1106 |
+
"single_word": false,
|
1107 |
+
"special": false
|
1108 |
+
},
|
1109 |
+
"138": {
|
1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": false,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false,
|
1115 |
+
"special": false
|
1116 |
+
},
|
1117 |
+
"139": {
|
1118 |
+
"content": "▁▁",
|
1119 |
+
"lstrip": false,
|
1120 |
+
"normalized": false,
|
1121 |
+
"rstrip": false,
|
1122 |
+
"single_word": false,
|
1123 |
+
"special": false
|
1124 |
+
},
|
1125 |
+
"140": {
|
1126 |
+
"content": "▁▁▁",
|
1127 |
+
"lstrip": false,
|
1128 |
+
"normalized": false,
|
1129 |
+
"rstrip": false,
|
1130 |
+
"single_word": false,
|
1131 |
+
"special": false
|
1132 |
+
},
|
1133 |
+
"141": {
|
1134 |
+
"content": "▁▁▁▁",
|
1135 |
+
"lstrip": false,
|
1136 |
+
"normalized": false,
|
1137 |
+
"rstrip": false,
|
1138 |
+
"single_word": false,
|
1139 |
+
"special": false
|
1140 |
+
},
|
1141 |
+
"142": {
|
1142 |
+
"content": "▁▁▁▁▁",
|
1143 |
+
"lstrip": false,
|
1144 |
+
"normalized": false,
|
1145 |
+
"rstrip": false,
|
1146 |
+
"single_word": false,
|
1147 |
+
"special": false
|
1148 |
+
},
|
1149 |
+
"143": {
|
1150 |
+
"content": "▁▁▁▁▁▁",
|
1151 |
+
"lstrip": false,
|
1152 |
+
"normalized": false,
|
1153 |
+
"rstrip": false,
|
1154 |
+
"single_word": false,
|
1155 |
+
"special": false
|
1156 |
+
},
|
1157 |
+
"144": {
|
1158 |
+
"content": "▁▁▁▁▁▁▁",
|
1159 |
+
"lstrip": false,
|
1160 |
+
"normalized": false,
|
1161 |
+
"rstrip": false,
|
1162 |
+
"single_word": false,
|
1163 |
+
"special": false
|
1164 |
+
},
|
1165 |
+
"145": {
|
1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
1167 |
+
"lstrip": false,
|
1168 |
+
"normalized": false,
|
1169 |
+
"rstrip": false,
|
1170 |
+
"single_word": false,
|
1171 |
+
"special": false
|
1172 |
+
},
|
1173 |
+
"146": {
|
1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
1175 |
+
"lstrip": false,
|
1176 |
+
"normalized": false,
|
1177 |
+
"rstrip": false,
|
1178 |
+
"single_word": false,
|
1179 |
+
"special": false
|
1180 |
+
},
|
1181 |
+
"147": {
|
1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
1183 |
+
"lstrip": false,
|
1184 |
+
"normalized": false,
|
1185 |
+
"rstrip": false,
|
1186 |
+
"single_word": false,
|
1187 |
+
"special": false
|
1188 |
+
},
|
1189 |
+
"148": {
|
1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
1191 |
+
"lstrip": false,
|
1192 |
+
"normalized": false,
|
1193 |
+
"rstrip": false,
|
1194 |
+
"single_word": false,
|
1195 |
+
"special": false
|
1196 |
+
},
|
1197 |
+
"149": {
|
1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
1199 |
+
"lstrip": false,
|
1200 |
+
"normalized": false,
|
1201 |
+
"rstrip": false,
|
1202 |
+
"single_word": false,
|
1203 |
+
"special": false
|
1204 |
+
},
|
1205 |
+
"150": {
|
1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1207 |
+
"lstrip": false,
|
1208 |
+
"normalized": false,
|
1209 |
+
"rstrip": false,
|
1210 |
+
"single_word": false,
|
1211 |
+
"special": false
|
1212 |
+
},
|
1213 |
+
"151": {
|
1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1215 |
+
"lstrip": false,
|
1216 |
+
"normalized": false,
|
1217 |
+
"rstrip": false,
|
1218 |
+
"single_word": false,
|
1219 |
+
"special": false
|
1220 |
+
},
|
1221 |
+
"152": {
|
1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1223 |
+
"lstrip": false,
|
1224 |
+
"normalized": false,
|
1225 |
+
"rstrip": false,
|
1226 |
+
"single_word": false,
|
1227 |
+
"special": false
|
1228 |
+
},
|
1229 |
+
"153": {
|
1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1231 |
+
"lstrip": false,
|
1232 |
+
"normalized": false,
|
1233 |
+
"rstrip": false,
|
1234 |
+
"single_word": false,
|
1235 |
+
"special": false
|
1236 |
+
},
|
1237 |
+
"154": {
|
1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1239 |
+
"lstrip": false,
|
1240 |
+
"normalized": false,
|
1241 |
+
"rstrip": false,
|
1242 |
+
"single_word": false,
|
1243 |
+
"special": false
|
1244 |
+
},
|
1245 |
+
"155": {
|
1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1247 |
+
"lstrip": false,
|
1248 |
+
"normalized": false,
|
1249 |
+
"rstrip": false,
|
1250 |
+
"single_word": false,
|
1251 |
+
"special": false
|
1252 |
+
},
|
1253 |
+
"156": {
|
1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1255 |
+
"lstrip": false,
|
1256 |
+
"normalized": false,
|
1257 |
+
"rstrip": false,
|
1258 |
+
"single_word": false,
|
1259 |
+
"special": false
|
1260 |
+
},
|
1261 |
+
"157": {
|
1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1263 |
+
"lstrip": false,
|
1264 |
+
"normalized": false,
|
1265 |
+
"rstrip": false,
|
1266 |
+
"single_word": false,
|
1267 |
+
"special": false
|
1268 |
+
},
|
1269 |
+
"158": {
|
1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1271 |
+
"lstrip": false,
|
1272 |
+
"normalized": false,
|
1273 |
+
"rstrip": false,
|
1274 |
+
"single_word": false,
|
1275 |
+
"special": false
|
1276 |
+
},
|
1277 |
+
"159": {
|
1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1279 |
+
"lstrip": false,
|
1280 |
+
"normalized": false,
|
1281 |
+
"rstrip": false,
|
1282 |
+
"single_word": false,
|
1283 |
+
"special": false
|
1284 |
+
},
|
1285 |
+
"160": {
|
1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1287 |
+
"lstrip": false,
|
1288 |
+
"normalized": false,
|
1289 |
+
"rstrip": false,
|
1290 |
+
"single_word": false,
|
1291 |
+
"special": false
|
1292 |
+
},
|
1293 |
+
"161": {
|
1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1295 |
+
"lstrip": false,
|
1296 |
+
"normalized": false,
|
1297 |
+
"rstrip": false,
|
1298 |
+
"single_word": false,
|
1299 |
+
"special": false
|
1300 |
+
},
|
1301 |
+
"162": {
|
1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1303 |
+
"lstrip": false,
|
1304 |
+
"normalized": false,
|
1305 |
+
"rstrip": false,
|
1306 |
+
"single_word": false,
|
1307 |
+
"special": false
|
1308 |
+
},
|
1309 |
+
"163": {
|
1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1311 |
+
"lstrip": false,
|
1312 |
+
"normalized": false,
|
1313 |
+
"rstrip": false,
|
1314 |
+
"single_word": false,
|
1315 |
+
"special": false
|
1316 |
+
},
|
1317 |
+
"164": {
|
1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1319 |
+
"lstrip": false,
|
1320 |
+
"normalized": false,
|
1321 |
+
"rstrip": false,
|
1322 |
+
"single_word": false,
|
1323 |
+
"special": false
|
1324 |
+
},
|
1325 |
+
"165": {
|
1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1327 |
+
"lstrip": false,
|
1328 |
+
"normalized": false,
|
1329 |
+
"rstrip": false,
|
1330 |
+
"single_word": false,
|
1331 |
+
"special": false
|
1332 |
+
},
|
1333 |
+
"166": {
|
1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1335 |
+
"lstrip": false,
|
1336 |
+
"normalized": false,
|
1337 |
+
"rstrip": false,
|
1338 |
+
"single_word": false,
|
1339 |
+
"special": false
|
1340 |
+
},
|
1341 |
+
"167": {
|
1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1343 |
+
"lstrip": false,
|
1344 |
+
"normalized": false,
|
1345 |
+
"rstrip": false,
|
1346 |
+
"single_word": false,
|
1347 |
+
"special": false
|
1348 |
+
},
|
1349 |
+
"168": {
|
1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1351 |
+
"lstrip": false,
|
1352 |
+
"normalized": false,
|
1353 |
+
"rstrip": false,
|
1354 |
+
"single_word": false,
|
1355 |
+
"special": false
|
1356 |
+
},
|
1357 |
+
"169": {
|
1358 |
+
"content": "<table>",
|
1359 |
+
"lstrip": false,
|
1360 |
+
"normalized": false,
|
1361 |
+
"rstrip": false,
|
1362 |
+
"single_word": false,
|
1363 |
+
"special": false
|
1364 |
+
},
|
1365 |
+
"170": {
|
1366 |
+
"content": "<caption>",
|
1367 |
+
"lstrip": false,
|
1368 |
+
"normalized": false,
|
1369 |
+
"rstrip": false,
|
1370 |
+
"single_word": false,
|
1371 |
+
"special": false
|
1372 |
+
},
|
1373 |
+
"171": {
|
1374 |
+
"content": "<thead>",
|
1375 |
+
"lstrip": false,
|
1376 |
+
"normalized": false,
|
1377 |
+
"rstrip": false,
|
1378 |
+
"single_word": false,
|
1379 |
+
"special": false
|
1380 |
+
},
|
1381 |
+
"172": {
|
1382 |
+
"content": "<tbody>",
|
1383 |
+
"lstrip": false,
|
1384 |
+
"normalized": false,
|
1385 |
+
"rstrip": false,
|
1386 |
+
"single_word": false,
|
1387 |
+
"special": false
|
1388 |
+
},
|
1389 |
+
"173": {
|
1390 |
+
"content": "<tfoot>",
|
1391 |
+
"lstrip": false,
|
1392 |
+
"normalized": false,
|
1393 |
+
"rstrip": false,
|
1394 |
+
"single_word": false,
|
1395 |
+
"special": false
|
1396 |
+
},
|
1397 |
+
"174": {
|
1398 |
+
"content": "<tr>",
|
1399 |
+
"lstrip": false,
|
1400 |
+
"normalized": false,
|
1401 |
+
"rstrip": false,
|
1402 |
+
"single_word": false,
|
1403 |
+
"special": false
|
1404 |
+
},
|
1405 |
+
"175": {
|
1406 |
+
"content": "<th>",
|
1407 |
+
"lstrip": false,
|
1408 |
+
"normalized": false,
|
1409 |
+
"rstrip": false,
|
1410 |
+
"single_word": false,
|
1411 |
+
"special": false
|
1412 |
+
},
|
1413 |
+
"176": {
|
1414 |
+
"content": "<td>",
|
1415 |
+
"lstrip": false,
|
1416 |
+
"normalized": false,
|
1417 |
+
"rstrip": false,
|
1418 |
+
"single_word": false,
|
1419 |
+
"special": false
|
1420 |
+
},
|
1421 |
+
"177": {
|
1422 |
+
"content": "</table>",
|
1423 |
+
"lstrip": false,
|
1424 |
+
"normalized": false,
|
1425 |
+
"rstrip": false,
|
1426 |
+
"single_word": false,
|
1427 |
+
"special": false
|
1428 |
+
},
|
1429 |
+
"178": {
|
1430 |
+
"content": "</caption>",
|
1431 |
+
"lstrip": false,
|
1432 |
+
"normalized": false,
|
1433 |
+
"rstrip": false,
|
1434 |
+
"single_word": false,
|
1435 |
+
"special": false
|
1436 |
+
},
|
1437 |
+
"179": {
|
1438 |
+
"content": "</thead>",
|
1439 |
+
"lstrip": false,
|
1440 |
+
"normalized": false,
|
1441 |
+
"rstrip": false,
|
1442 |
+
"single_word": false,
|
1443 |
+
"special": false
|
1444 |
+
},
|
1445 |
+
"180": {
|
1446 |
+
"content": "</tbody>",
|
1447 |
+
"lstrip": false,
|
1448 |
+
"normalized": false,
|
1449 |
+
"rstrip": false,
|
1450 |
+
"single_word": false,
|
1451 |
+
"special": false
|
1452 |
+
},
|
1453 |
+
"181": {
|
1454 |
+
"content": "</tfoot>",
|
1455 |
+
"lstrip": false,
|
1456 |
+
"normalized": false,
|
1457 |
+
"rstrip": false,
|
1458 |
+
"single_word": false,
|
1459 |
+
"special": false
|
1460 |
+
},
|
1461 |
+
"182": {
|
1462 |
+
"content": "</tr>",
|
1463 |
+
"lstrip": false,
|
1464 |
+
"normalized": false,
|
1465 |
+
"rstrip": false,
|
1466 |
+
"single_word": false,
|
1467 |
+
"special": false
|
1468 |
+
},
|
1469 |
+
"183": {
|
1470 |
+
"content": "</th>",
|
1471 |
+
"lstrip": false,
|
1472 |
+
"normalized": false,
|
1473 |
+
"rstrip": false,
|
1474 |
+
"single_word": false,
|
1475 |
+
"special": false
|
1476 |
+
},
|
1477 |
+
"184": {
|
1478 |
+
"content": "</td>",
|
1479 |
+
"lstrip": false,
|
1480 |
+
"normalized": false,
|
1481 |
+
"rstrip": false,
|
1482 |
+
"single_word": false,
|
1483 |
+
"special": false
|
1484 |
+
},
|
1485 |
+
"185": {
|
1486 |
+
"content": "<h1>",
|
1487 |
+
"lstrip": false,
|
1488 |
+
"normalized": false,
|
1489 |
+
"rstrip": false,
|
1490 |
+
"single_word": false,
|
1491 |
+
"special": false
|
1492 |
+
},
|
1493 |
+
"186": {
|
1494 |
+
"content": "<h2>",
|
1495 |
+
"lstrip": false,
|
1496 |
+
"normalized": false,
|
1497 |
+
"rstrip": false,
|
1498 |
+
"single_word": false,
|
1499 |
+
"special": false
|
1500 |
+
},
|
1501 |
+
"187": {
|
1502 |
+
"content": "<h3>",
|
1503 |
+
"lstrip": false,
|
1504 |
+
"normalized": false,
|
1505 |
+
"rstrip": false,
|
1506 |
+
"single_word": false,
|
1507 |
+
"special": false
|
1508 |
+
},
|
1509 |
+
"188": {
|
1510 |
+
"content": "<h4>",
|
1511 |
+
"lstrip": false,
|
1512 |
+
"normalized": false,
|
1513 |
+
"rstrip": false,
|
1514 |
+
"single_word": false,
|
1515 |
+
"special": false
|
1516 |
+
},
|
1517 |
+
"189": {
|
1518 |
+
"content": "<h5>",
|
1519 |
+
"lstrip": false,
|
1520 |
+
"normalized": false,
|
1521 |
+
"rstrip": false,
|
1522 |
+
"single_word": false,
|
1523 |
+
"special": false
|
1524 |
+
},
|
1525 |
+
"190": {
|
1526 |
+
"content": "<h6>",
|
1527 |
+
"lstrip": false,
|
1528 |
+
"normalized": false,
|
1529 |
+
"rstrip": false,
|
1530 |
+
"single_word": false,
|
1531 |
+
"special": false
|
1532 |
+
},
|
1533 |
+
"191": {
|
1534 |
+
"content": "<blockquote>",
|
1535 |
+
"lstrip": false,
|
1536 |
+
"normalized": false,
|
1537 |
+
"rstrip": false,
|
1538 |
+
"single_word": false,
|
1539 |
+
"special": false
|
1540 |
+
},
|
1541 |
+
"192": {
|
1542 |
+
"content": "</h1>",
|
1543 |
+
"lstrip": false,
|
1544 |
+
"normalized": false,
|
1545 |
+
"rstrip": false,
|
1546 |
+
"single_word": false,
|
1547 |
+
"special": false
|
1548 |
+
},
|
1549 |
+
"193": {
|
1550 |
+
"content": "</h2>",
|
1551 |
+
"lstrip": false,
|
1552 |
+
"normalized": false,
|
1553 |
+
"rstrip": false,
|
1554 |
+
"single_word": false,
|
1555 |
+
"special": false
|
1556 |
+
},
|
1557 |
+
"194": {
|
1558 |
+
"content": "</h3>",
|
1559 |
+
"lstrip": false,
|
1560 |
+
"normalized": false,
|
1561 |
+
"rstrip": false,
|
1562 |
+
"single_word": false,
|
1563 |
+
"special": false
|
1564 |
+
},
|
1565 |
+
"195": {
|
1566 |
+
"content": "</h4>",
|
1567 |
+
"lstrip": false,
|
1568 |
+
"normalized": false,
|
1569 |
+
"rstrip": false,
|
1570 |
+
"single_word": false,
|
1571 |
+
"special": false
|
1572 |
+
},
|
1573 |
+
"196": {
|
1574 |
+
"content": "</h5>",
|
1575 |
+
"lstrip": false,
|
1576 |
+
"normalized": false,
|
1577 |
+
"rstrip": false,
|
1578 |
+
"single_word": false,
|
1579 |
+
"special": false
|
1580 |
+
},
|
1581 |
+
"197": {
|
1582 |
+
"content": "</h6>",
|
1583 |
+
"lstrip": false,
|
1584 |
+
"normalized": false,
|
1585 |
+
"rstrip": false,
|
1586 |
+
"single_word": false,
|
1587 |
+
"special": false
|
1588 |
+
},
|
1589 |
+
"198": {
|
1590 |
+
"content": "</blockquote>",
|
1591 |
+
"lstrip": false,
|
1592 |
+
"normalized": false,
|
1593 |
+
"rstrip": false,
|
1594 |
+
"single_word": false,
|
1595 |
+
"special": false
|
1596 |
+
},
|
1597 |
+
"199": {
|
1598 |
+
"content": "<strong>",
|
1599 |
+
"lstrip": false,
|
1600 |
+
"normalized": false,
|
1601 |
+
"rstrip": false,
|
1602 |
+
"single_word": false,
|
1603 |
+
"special": false
|
1604 |
+
},
|
1605 |
+
"200": {
|
1606 |
+
"content": "<em>",
|
1607 |
+
"lstrip": false,
|
1608 |
+
"normalized": false,
|
1609 |
+
"rstrip": false,
|
1610 |
+
"single_word": false,
|
1611 |
+
"special": false
|
1612 |
+
},
|
1613 |
+
"201": {
|
1614 |
+
"content": "<b>",
|
1615 |
+
"lstrip": false,
|
1616 |
+
"normalized": false,
|
1617 |
+
"rstrip": false,
|
1618 |
+
"single_word": false,
|
1619 |
+
"special": false
|
1620 |
+
},
|
1621 |
+
"202": {
|
1622 |
+
"content": "<i>",
|
1623 |
+
"lstrip": false,
|
1624 |
+
"normalized": false,
|
1625 |
+
"rstrip": false,
|
1626 |
+
"single_word": false,
|
1627 |
+
"special": false
|
1628 |
+
},
|
1629 |
+
"203": {
|
1630 |
+
"content": "<u>",
|
1631 |
+
"lstrip": false,
|
1632 |
+
"normalized": false,
|
1633 |
+
"rstrip": false,
|
1634 |
+
"single_word": false,
|
1635 |
+
"special": false
|
1636 |
+
},
|
1637 |
+
"204": {
|
1638 |
+
"content": "<s>",
|
1639 |
+
"lstrip": false,
|
1640 |
+
"normalized": false,
|
1641 |
+
"rstrip": false,
|
1642 |
+
"single_word": false,
|
1643 |
+
"special": false
|
1644 |
+
},
|
1645 |
+
"205": {
|
1646 |
+
"content": "<sub>",
|
1647 |
+
"lstrip": false,
|
1648 |
+
"normalized": false,
|
1649 |
+
"rstrip": false,
|
1650 |
+
"single_word": false,
|
1651 |
+
"special": false
|
1652 |
+
},
|
1653 |
+
"206": {
|
1654 |
+
"content": "<sup>",
|
1655 |
+
"lstrip": false,
|
1656 |
+
"normalized": false,
|
1657 |
+
"rstrip": false,
|
1658 |
+
"single_word": false,
|
1659 |
+
"special": false
|
1660 |
+
},
|
1661 |
+
"207": {
|
1662 |
+
"content": "<code>",
|
1663 |
+
"lstrip": false,
|
1664 |
+
"normalized": false,
|
1665 |
+
"rstrip": false,
|
1666 |
+
"single_word": false,
|
1667 |
+
"special": false
|
1668 |
+
},
|
1669 |
+
"208": {
|
1670 |
+
"content": "</strong>",
|
1671 |
+
"lstrip": false,
|
1672 |
+
"normalized": false,
|
1673 |
+
"rstrip": false,
|
1674 |
+
"single_word": false,
|
1675 |
+
"special": false
|
1676 |
+
},
|
1677 |
+
"209": {
|
1678 |
+
"content": "</em>",
|
1679 |
+
"lstrip": false,
|
1680 |
+
"normalized": false,
|
1681 |
+
"rstrip": false,
|
1682 |
+
"single_word": false,
|
1683 |
+
"special": false
|
1684 |
+
},
|
1685 |
+
"210": {
|
1686 |
+
"content": "</b>",
|
1687 |
+
"lstrip": false,
|
1688 |
+
"normalized": false,
|
1689 |
+
"rstrip": false,
|
1690 |
+
"single_word": false,
|
1691 |
+
"special": false
|
1692 |
+
},
|
1693 |
+
"211": {
|
1694 |
+
"content": "</i>",
|
1695 |
+
"lstrip": false,
|
1696 |
+
"normalized": false,
|
1697 |
+
"rstrip": false,
|
1698 |
+
"single_word": false,
|
1699 |
+
"special": false
|
1700 |
+
},
|
1701 |
+
"212": {
|
1702 |
+
"content": "</u>",
|
1703 |
+
"lstrip": false,
|
1704 |
+
"normalized": false,
|
1705 |
+
"rstrip": false,
|
1706 |
+
"single_word": false,
|
1707 |
+
"special": false
|
1708 |
+
},
|
1709 |
+
"213": {
|
1710 |
+
"content": "</s>",
|
1711 |
+
"lstrip": false,
|
1712 |
+
"normalized": false,
|
1713 |
+
"rstrip": false,
|
1714 |
+
"single_word": false,
|
1715 |
+
"special": false
|
1716 |
+
},
|
1717 |
+
"214": {
|
1718 |
+
"content": "</sub>",
|
1719 |
+
"lstrip": false,
|
1720 |
+
"normalized": false,
|
1721 |
+
"rstrip": false,
|
1722 |
+
"single_word": false,
|
1723 |
+
"special": false
|
1724 |
+
},
|
1725 |
+
"215": {
|
1726 |
+
"content": "</sup>",
|
1727 |
+
"lstrip": false,
|
1728 |
+
"normalized": false,
|
1729 |
+
"rstrip": false,
|
1730 |
+
"single_word": false,
|
1731 |
+
"special": false
|
1732 |
+
},
|
1733 |
+
"216": {
|
1734 |
+
"content": "</code>",
|
1735 |
+
"lstrip": false,
|
1736 |
+
"normalized": false,
|
1737 |
+
"rstrip": false,
|
1738 |
+
"single_word": false,
|
1739 |
+
"special": false
|
1740 |
+
}
|
1741 |
+
},
|
1742 |
+
"additional_special_tokens": [
|
1743 |
+
"<start_of_turn>",
|
1744 |
+
"<end_of_turn>"
|
1745 |
+
],
|
1746 |
+
"bos_token": "<bos>",
|
1747 |
+
"chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
|
1748 |
+
"clean_up_tokenization_spaces": false,
|
1749 |
+
"eos_token": "<eos>",
|
1750 |
+
"model_max_length": 1000000000000000019884624838656,
|
1751 |
+
"pad_token": "<pad>",
|
1752 |
+
"sp_model_kwargs": {},
|
1753 |
+
"spaces_between_special_tokens": false,
|
1754 |
+
"tokenizer_class": "GemmaTokenizer",
|
1755 |
+
"unk_token": "<unk>",
|
1756 |
+
"use_default_system_prompt": false
|
1757 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1797 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.7558488302339532,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 252,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.002999400119976005,
|
13 |
+
"grad_norm": 12.213529318427376,
|
14 |
+
"learning_rate": 1.0000000000000002e-06,
|
15 |
+
"loss": 1.6991,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.00599880023995201,
|
20 |
+
"grad_norm": 11.149836011452198,
|
21 |
+
"learning_rate": 2.0000000000000003e-06,
|
22 |
+
"loss": 1.5997,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.008998200359928014,
|
27 |
+
"grad_norm": 5.296165512046405,
|
28 |
+
"learning_rate": 3e-06,
|
29 |
+
"loss": 1.3037,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.01199760047990402,
|
34 |
+
"grad_norm": 3.7277911972297235,
|
35 |
+
"learning_rate": 4.000000000000001e-06,
|
36 |
+
"loss": 1.3472,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.014997000599880024,
|
41 |
+
"grad_norm": 6.970291148182751,
|
42 |
+
"learning_rate": 5e-06,
|
43 |
+
"loss": 1.5234,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.017996400719856028,
|
48 |
+
"grad_norm": 5.825870871741097,
|
49 |
+
"learning_rate": 6e-06,
|
50 |
+
"loss": 1.2331,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.020995800839832032,
|
55 |
+
"grad_norm": 4.789226733983147,
|
56 |
+
"learning_rate": 7e-06,
|
57 |
+
"loss": 1.2847,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.02399520095980804,
|
62 |
+
"grad_norm": 5.735809923380043,
|
63 |
+
"learning_rate": 8.000000000000001e-06,
|
64 |
+
"loss": 1.3148,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.026994601079784044,
|
69 |
+
"grad_norm": 4.146594143559111,
|
70 |
+
"learning_rate": 9e-06,
|
71 |
+
"loss": 1.3241,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.029994001199760048,
|
76 |
+
"grad_norm": 4.3548572301609365,
|
77 |
+
"learning_rate": 1e-05,
|
78 |
+
"loss": 1.2048,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.032993401319736056,
|
83 |
+
"grad_norm": 3.186860649490824,
|
84 |
+
"learning_rate": 9.999942663491213e-06,
|
85 |
+
"loss": 1.271,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.035992801439712056,
|
90 |
+
"grad_norm": 5.683449148461711,
|
91 |
+
"learning_rate": 9.999770655279843e-06,
|
92 |
+
"loss": 1.4619,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.038992201559688064,
|
97 |
+
"grad_norm": 2.918639590322084,
|
98 |
+
"learning_rate": 9.99948397931083e-06,
|
99 |
+
"loss": 1.2698,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.041991601679664065,
|
104 |
+
"grad_norm": 3.1049642688975228,
|
105 |
+
"learning_rate": 9.999082642158972e-06,
|
106 |
+
"loss": 1.4018,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.04499100179964007,
|
111 |
+
"grad_norm": 2.396816425806027,
|
112 |
+
"learning_rate": 9.99856665302878e-06,
|
113 |
+
"loss": 1.1897,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.04799040191961608,
|
118 |
+
"grad_norm": 2.6334601975355283,
|
119 |
+
"learning_rate": 9.997936023754258e-06,
|
120 |
+
"loss": 1.3976,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.05098980203959208,
|
125 |
+
"grad_norm": 2.619689679258694,
|
126 |
+
"learning_rate": 9.997190768798639e-06,
|
127 |
+
"loss": 1.286,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.05398920215956809,
|
132 |
+
"grad_norm": 2.7084119507983377,
|
133 |
+
"learning_rate": 9.99633090525405e-06,
|
134 |
+
"loss": 1.3328,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.05698860227954409,
|
139 |
+
"grad_norm": 2.3481903809919404,
|
140 |
+
"learning_rate": 9.995356452841122e-06,
|
141 |
+
"loss": 1.1662,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.059988002399520096,
|
146 |
+
"grad_norm": 4.651416427067284,
|
147 |
+
"learning_rate": 9.994267433908533e-06,
|
148 |
+
"loss": 1.5033,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0629874025194961,
|
153 |
+
"grad_norm": 2.625598226472764,
|
154 |
+
"learning_rate": 9.9930638734325e-06,
|
155 |
+
"loss": 1.2022,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.06598680263947211,
|
160 |
+
"grad_norm": 2.4104347021265973,
|
161 |
+
"learning_rate": 9.991745799016206e-06,
|
162 |
+
"loss": 1.1979,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.06898620275944811,
|
167 |
+
"grad_norm": 3.1305838351835478,
|
168 |
+
"learning_rate": 9.990313240889167e-06,
|
169 |
+
"loss": 1.3105,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.07198560287942411,
|
174 |
+
"grad_norm": 3.18309366674778,
|
175 |
+
"learning_rate": 9.988766231906532e-06,
|
176 |
+
"loss": 1.3079,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.07498500299940011,
|
181 |
+
"grad_norm": 3.5781057246328563,
|
182 |
+
"learning_rate": 9.987104807548341e-06,
|
183 |
+
"loss": 1.3255,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.07798440311937613,
|
188 |
+
"grad_norm": 2.259604288692876,
|
189 |
+
"learning_rate": 9.985329005918702e-06,
|
190 |
+
"loss": 1.242,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.08098380323935213,
|
195 |
+
"grad_norm": 5.16511455231151,
|
196 |
+
"learning_rate": 9.983438867744923e-06,
|
197 |
+
"loss": 1.5295,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.08398320335932813,
|
202 |
+
"grad_norm": 2.5507458276752955,
|
203 |
+
"learning_rate": 9.981434436376572e-06,
|
204 |
+
"loss": 1.1835,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.08698260347930414,
|
209 |
+
"grad_norm": 2.374301337319529,
|
210 |
+
"learning_rate": 9.97931575778449e-06,
|
211 |
+
"loss": 1.2602,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.08998200359928014,
|
216 |
+
"grad_norm": 2.869182508074545,
|
217 |
+
"learning_rate": 9.977082880559725e-06,
|
218 |
+
"loss": 1.2714,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.09298140371925614,
|
223 |
+
"grad_norm": 3.352349678924823,
|
224 |
+
"learning_rate": 9.974735855912436e-06,
|
225 |
+
"loss": 1.2895,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.09598080383923216,
|
230 |
+
"grad_norm": 2.402498887438619,
|
231 |
+
"learning_rate": 9.972274737670702e-06,
|
232 |
+
"loss": 1.2169,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.09898020395920816,
|
237 |
+
"grad_norm": 2.3026043458108356,
|
238 |
+
"learning_rate": 9.969699582279294e-06,
|
239 |
+
"loss": 1.2486,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.10197960407918416,
|
244 |
+
"grad_norm": 2.7234482697971796,
|
245 |
+
"learning_rate": 9.967010448798376e-06,
|
246 |
+
"loss": 1.3611,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.10497900419916016,
|
251 |
+
"grad_norm": 2.3328312481588096,
|
252 |
+
"learning_rate": 9.964207398902163e-06,
|
253 |
+
"loss": 1.2112,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.10797840431913618,
|
258 |
+
"grad_norm": 2.3738667556158304,
|
259 |
+
"learning_rate": 9.961290496877492e-06,
|
260 |
+
"loss": 1.1489,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.11097780443911218,
|
265 |
+
"grad_norm": 2.381064080119671,
|
266 |
+
"learning_rate": 9.958259809622353e-06,
|
267 |
+
"loss": 1.3426,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.11397720455908818,
|
272 |
+
"grad_norm": 2.789399877084244,
|
273 |
+
"learning_rate": 9.955115406644357e-06,
|
274 |
+
"loss": 1.2355,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.11697660467906419,
|
279 |
+
"grad_norm": 2.2360091447066885,
|
280 |
+
"learning_rate": 9.951857360059141e-06,
|
281 |
+
"loss": 1.298,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.11997600479904019,
|
286 |
+
"grad_norm": 2.3420608415672644,
|
287 |
+
"learning_rate": 9.948485744588709e-06,
|
288 |
+
"loss": 1.2597,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.12297540491901619,
|
293 |
+
"grad_norm": 2.0514216630297786,
|
294 |
+
"learning_rate": 9.945000637559728e-06,
|
295 |
+
"loss": 1.2464,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.1259748050389922,
|
300 |
+
"grad_norm": 2.1083906964286765,
|
301 |
+
"learning_rate": 9.941402118901743e-06,
|
302 |
+
"loss": 1.2223,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.1289742051589682,
|
307 |
+
"grad_norm": 2.584585224378793,
|
308 |
+
"learning_rate": 9.937690271145356e-06,
|
309 |
+
"loss": 1.2575,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.13197360527894422,
|
314 |
+
"grad_norm": 2.3779090684986652,
|
315 |
+
"learning_rate": 9.93386517942032e-06,
|
316 |
+
"loss": 1.1451,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.1349730053989202,
|
321 |
+
"grad_norm": 2.108339055225494,
|
322 |
+
"learning_rate": 9.9299269314536e-06,
|
323 |
+
"loss": 1.2248,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.13797240551889622,
|
328 |
+
"grad_norm": 2.121719885374642,
|
329 |
+
"learning_rate": 9.92587561756735e-06,
|
330 |
+
"loss": 1.207,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.14097180563887224,
|
335 |
+
"grad_norm": 2.205771486341789,
|
336 |
+
"learning_rate": 9.921711330676848e-06,
|
337 |
+
"loss": 1.2321,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.14397120575884823,
|
342 |
+
"grad_norm": 2.288650968193418,
|
343 |
+
"learning_rate": 9.917434166288364e-06,
|
344 |
+
"loss": 1.244,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.14697060587882424,
|
349 |
+
"grad_norm": 2.3703349873199917,
|
350 |
+
"learning_rate": 9.913044222496966e-06,
|
351 |
+
"loss": 1.2758,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.14997000599880023,
|
356 |
+
"grad_norm": 2.342816783402187,
|
357 |
+
"learning_rate": 9.908541599984276e-06,
|
358 |
+
"loss": 1.2799,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.15296940611877624,
|
363 |
+
"grad_norm": 2.290011867632185,
|
364 |
+
"learning_rate": 9.903926402016153e-06,
|
365 |
+
"loss": 1.137,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.15596880623875226,
|
370 |
+
"grad_norm": 2.2455094517388825,
|
371 |
+
"learning_rate": 9.899198734440335e-06,
|
372 |
+
"loss": 1.2133,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.15896820635872824,
|
377 |
+
"grad_norm": 2.263487895355519,
|
378 |
+
"learning_rate": 9.894358705684002e-06,
|
379 |
+
"loss": 1.1898,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.16196760647870426,
|
384 |
+
"grad_norm": 2.094119128560065,
|
385 |
+
"learning_rate": 9.889406426751296e-06,
|
386 |
+
"loss": 1.1847,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.16496700659868027,
|
391 |
+
"grad_norm": 2.45640150031141,
|
392 |
+
"learning_rate": 9.88434201122077e-06,
|
393 |
+
"loss": 1.2662,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.16796640671865626,
|
398 |
+
"grad_norm": 3.7462847341409606,
|
399 |
+
"learning_rate": 9.879165575242788e-06,
|
400 |
+
"loss": 1.1912,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.17096580683863227,
|
405 |
+
"grad_norm": 2.382097038596032,
|
406 |
+
"learning_rate": 9.873877237536854e-06,
|
407 |
+
"loss": 1.2652,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.1739652069586083,
|
412 |
+
"grad_norm": 2.320080713494513,
|
413 |
+
"learning_rate": 9.868477119388897e-06,
|
414 |
+
"loss": 1.2682,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.17696460707858427,
|
419 |
+
"grad_norm": 2.1974546622057938,
|
420 |
+
"learning_rate": 9.862965344648485e-06,
|
421 |
+
"loss": 1.1956,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.1799640071985603,
|
426 |
+
"grad_norm": 2.40241845961337,
|
427 |
+
"learning_rate": 9.85734203972599e-06,
|
428 |
+
"loss": 1.2948,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.1829634073185363,
|
433 |
+
"grad_norm": 2.1855343450625053,
|
434 |
+
"learning_rate": 9.851607333589677e-06,
|
435 |
+
"loss": 1.1967,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.1859628074385123,
|
440 |
+
"grad_norm": 2.772912562685191,
|
441 |
+
"learning_rate": 9.84576135776276e-06,
|
442 |
+
"loss": 1.1864,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.1889622075584883,
|
447 |
+
"grad_norm": 2.420057020746961,
|
448 |
+
"learning_rate": 9.839804246320374e-06,
|
449 |
+
"loss": 1.2534,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.19196160767846432,
|
454 |
+
"grad_norm": 2.265555099135192,
|
455 |
+
"learning_rate": 9.833736135886513e-06,
|
456 |
+
"loss": 1.2563,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.1949610077984403,
|
461 |
+
"grad_norm": 2.292076182842636,
|
462 |
+
"learning_rate": 9.827557165630879e-06,
|
463 |
+
"loss": 1.193,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.19796040791841632,
|
468 |
+
"grad_norm": 2.032874490713336,
|
469 |
+
"learning_rate": 9.821267477265705e-06,
|
470 |
+
"loss": 1.231,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.20095980803839233,
|
475 |
+
"grad_norm": 2.1341683347971543,
|
476 |
+
"learning_rate": 9.814867215042503e-06,
|
477 |
+
"loss": 1.2317,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.20395920815836832,
|
482 |
+
"grad_norm": 2.2463443930345077,
|
483 |
+
"learning_rate": 9.808356525748748e-06,
|
484 |
+
"loss": 1.2911,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.20695860827834434,
|
489 |
+
"grad_norm": 2.0325804061530848,
|
490 |
+
"learning_rate": 9.801735558704516e-06,
|
491 |
+
"loss": 1.254,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.20995800839832032,
|
496 |
+
"grad_norm": 2.0568500164008086,
|
497 |
+
"learning_rate": 9.795004465759067e-06,
|
498 |
+
"loss": 1.206,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.21295740851829634,
|
503 |
+
"grad_norm": 2.082577302356669,
|
504 |
+
"learning_rate": 9.78816340128734e-06,
|
505 |
+
"loss": 1.2027,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.21595680863827235,
|
510 |
+
"grad_norm": 2.048998263808703,
|
511 |
+
"learning_rate": 9.781212522186442e-06,
|
512 |
+
"loss": 1.2288,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.21895620875824834,
|
517 |
+
"grad_norm": 2.49581568276726,
|
518 |
+
"learning_rate": 9.774151987872029e-06,
|
519 |
+
"loss": 1.2493,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.22195560887822435,
|
524 |
+
"grad_norm": 1.8323511888260988,
|
525 |
+
"learning_rate": 9.766981960274653e-06,
|
526 |
+
"loss": 1.2133,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.22495500899820037,
|
531 |
+
"grad_norm": 1.9244897973012691,
|
532 |
+
"learning_rate": 9.759702603836059e-06,
|
533 |
+
"loss": 1.1556,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.22795440911817635,
|
538 |
+
"grad_norm": 2.2391757657702476,
|
539 |
+
"learning_rate": 9.752314085505396e-06,
|
540 |
+
"loss": 1.139,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.23095380923815237,
|
545 |
+
"grad_norm": 2.1062513435343955,
|
546 |
+
"learning_rate": 9.744816574735405e-06,
|
547 |
+
"loss": 1.1568,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.23395320935812838,
|
552 |
+
"grad_norm": 2.244216493001031,
|
553 |
+
"learning_rate": 9.737210243478522e-06,
|
554 |
+
"loss": 1.1672,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.23695260947810437,
|
559 |
+
"grad_norm": 2.2301876958310585,
|
560 |
+
"learning_rate": 9.72949526618294e-06,
|
561 |
+
"loss": 1.1805,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.23995200959808038,
|
566 |
+
"grad_norm": 2.087760281351449,
|
567 |
+
"learning_rate": 9.721671819788603e-06,
|
568 |
+
"loss": 1.2595,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.2429514097180564,
|
573 |
+
"grad_norm": 2.040923837775886,
|
574 |
+
"learning_rate": 9.713740083723152e-06,
|
575 |
+
"loss": 1.1853,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.24595080983803239,
|
580 |
+
"grad_norm": 1.9835044903865013,
|
581 |
+
"learning_rate": 9.705700239897809e-06,
|
582 |
+
"loss": 1.1165,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.2489502099580084,
|
587 |
+
"grad_norm": 2.4048211037733433,
|
588 |
+
"learning_rate": 9.697552472703205e-06,
|
589 |
+
"loss": 1.2442,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.2519496100779844,
|
594 |
+
"grad_norm": 1.9274434259225983,
|
595 |
+
"learning_rate": 9.689296969005151e-06,
|
596 |
+
"loss": 1.2233,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.2549490101979604,
|
601 |
+
"grad_norm": 2.0930221605237813,
|
602 |
+
"learning_rate": 9.680933918140348e-06,
|
603 |
+
"loss": 1.2042,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.2579484103179364,
|
608 |
+
"grad_norm": 2.050947291358715,
|
609 |
+
"learning_rate": 9.672463511912056e-06,
|
610 |
+
"loss": 1.1526,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.26094781043791243,
|
615 |
+
"grad_norm": 2.1905662044973218,
|
616 |
+
"learning_rate": 9.66388594458568e-06,
|
617 |
+
"loss": 1.2428,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.26394721055788845,
|
622 |
+
"grad_norm": 2.194939852549527,
|
623 |
+
"learning_rate": 9.655201412884328e-06,
|
624 |
+
"loss": 1.1842,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.2669466106778644,
|
629 |
+
"grad_norm": 1.9191574847419615,
|
630 |
+
"learning_rate": 9.64641011598429e-06,
|
631 |
+
"loss": 1.2005,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.2699460107978404,
|
636 |
+
"grad_norm": 2.0406272846772597,
|
637 |
+
"learning_rate": 9.637512255510475e-06,
|
638 |
+
"loss": 1.1275,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.27294541091781643,
|
643 |
+
"grad_norm": 1.9546291627174466,
|
644 |
+
"learning_rate": 9.628508035531785e-06,
|
645 |
+
"loss": 1.2274,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.27594481103779245,
|
650 |
+
"grad_norm": 1.9691367121837948,
|
651 |
+
"learning_rate": 9.619397662556434e-06,
|
652 |
+
"loss": 1.207,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.27894421115776846,
|
657 |
+
"grad_norm": 2.3613406410056323,
|
658 |
+
"learning_rate": 9.610181345527217e-06,
|
659 |
+
"loss": 1.2273,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.2819436112777445,
|
664 |
+
"grad_norm": 1.869890124546451,
|
665 |
+
"learning_rate": 9.600859295816708e-06,
|
666 |
+
"loss": 1.2272,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.28494301139772044,
|
671 |
+
"grad_norm": 2.1493924596390834,
|
672 |
+
"learning_rate": 9.591431727222425e-06,
|
673 |
+
"loss": 1.1787,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.28794241151769645,
|
678 |
+
"grad_norm": 2.055643425325773,
|
679 |
+
"learning_rate": 9.581898855961911e-06,
|
680 |
+
"loss": 1.1993,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.29094181163767247,
|
685 |
+
"grad_norm": 1.84642386683885,
|
686 |
+
"learning_rate": 9.572260900667794e-06,
|
687 |
+
"loss": 1.1839,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.2939412117576485,
|
692 |
+
"grad_norm": 1.890951805519698,
|
693 |
+
"learning_rate": 9.562518082382751e-06,
|
694 |
+
"loss": 1.207,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.2969406118776245,
|
699 |
+
"grad_norm": 2.37835708136971,
|
700 |
+
"learning_rate": 9.55267062455446e-06,
|
701 |
+
"loss": 1.1894,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.29994001199760045,
|
706 |
+
"grad_norm": 1.9298763701114428,
|
707 |
+
"learning_rate": 9.542718753030463e-06,
|
708 |
+
"loss": 1.17,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.30293941211757647,
|
713 |
+
"grad_norm": 1.9738559838328023,
|
714 |
+
"learning_rate": 9.532662696052986e-06,
|
715 |
+
"loss": 1.1911,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.3059388122375525,
|
720 |
+
"grad_norm": 2.097481526316711,
|
721 |
+
"learning_rate": 9.522502684253709e-06,
|
722 |
+
"loss": 1.2047,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.3089382123575285,
|
727 |
+
"grad_norm": 2.2773066391553405,
|
728 |
+
"learning_rate": 9.512238950648474e-06,
|
729 |
+
"loss": 1.1683,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.3119376124775045,
|
734 |
+
"grad_norm": 2.0545409984803435,
|
735 |
+
"learning_rate": 9.501871730631944e-06,
|
736 |
+
"loss": 1.1777,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.3149370125974805,
|
741 |
+
"grad_norm": 2.0765643204952435,
|
742 |
+
"learning_rate": 9.491401261972194e-06,
|
743 |
+
"loss": 1.2306,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.3179364127174565,
|
748 |
+
"grad_norm": 1.9891174989072355,
|
749 |
+
"learning_rate": 9.480827784805278e-06,
|
750 |
+
"loss": 1.2351,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.3209358128374325,
|
755 |
+
"grad_norm": 1.889574475483626,
|
756 |
+
"learning_rate": 9.4701515416297e-06,
|
757 |
+
"loss": 1.1742,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.3239352129574085,
|
762 |
+
"grad_norm": 2.0131114525216955,
|
763 |
+
"learning_rate": 9.459372777300863e-06,
|
764 |
+
"loss": 1.127,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.32693461307738453,
|
769 |
+
"grad_norm": 2.0094971545889506,
|
770 |
+
"learning_rate": 9.448491739025455e-06,
|
771 |
+
"loss": 1.1203,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.32993401319736054,
|
776 |
+
"grad_norm": 2.007024349964355,
|
777 |
+
"learning_rate": 9.437508676355774e-06,
|
778 |
+
"loss": 1.2005,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.33293341331733656,
|
783 |
+
"grad_norm": 1.834949376512209,
|
784 |
+
"learning_rate": 9.426423841184007e-06,
|
785 |
+
"loss": 1.1451,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.3359328134373125,
|
790 |
+
"grad_norm": 2.0659739662077863,
|
791 |
+
"learning_rate": 9.415237487736452e-06,
|
792 |
+
"loss": 1.1978,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.33893221355728853,
|
797 |
+
"grad_norm": 2.0021385422334714,
|
798 |
+
"learning_rate": 9.403949872567696e-06,
|
799 |
+
"loss": 1.1969,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.34193161367726455,
|
804 |
+
"grad_norm": 2.131713368907865,
|
805 |
+
"learning_rate": 9.392561254554712e-06,
|
806 |
+
"loss": 1.0958,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.34493101379724056,
|
811 |
+
"grad_norm": 2.009265355301516,
|
812 |
+
"learning_rate": 9.381071894890942e-06,
|
813 |
+
"loss": 1.2154,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.3479304139172166,
|
818 |
+
"grad_norm": 1.9134985847126271,
|
819 |
+
"learning_rate": 9.369482057080293e-06,
|
820 |
+
"loss": 1.2242,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.3509298140371926,
|
825 |
+
"grad_norm": 1.9567206999616176,
|
826 |
+
"learning_rate": 9.3577920069311e-06,
|
827 |
+
"loss": 1.172,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.35392921415716855,
|
832 |
+
"grad_norm": 1.9433526958741427,
|
833 |
+
"learning_rate": 9.346002012550027e-06,
|
834 |
+
"loss": 1.1785,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.35692861427714456,
|
839 |
+
"grad_norm": 3.7758127026886776,
|
840 |
+
"learning_rate": 9.334112344335924e-06,
|
841 |
+
"loss": 1.2509,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.3599280143971206,
|
846 |
+
"grad_norm": 2.2288097190307754,
|
847 |
+
"learning_rate": 9.322123274973613e-06,
|
848 |
+
"loss": 1.2034,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.3629274145170966,
|
853 |
+
"grad_norm": 2.210018938006893,
|
854 |
+
"learning_rate": 9.310035079427651e-06,
|
855 |
+
"loss": 1.2089,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.3659268146370726,
|
860 |
+
"grad_norm": 1.8381206653711355,
|
861 |
+
"learning_rate": 9.297848034936007e-06,
|
862 |
+
"loss": 1.186,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.36892621475704857,
|
867 |
+
"grad_norm": 2.1078020542808913,
|
868 |
+
"learning_rate": 9.285562421003716e-06,
|
869 |
+
"loss": 1.2042,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.3719256148770246,
|
874 |
+
"grad_norm": 2.2181514311801496,
|
875 |
+
"learning_rate": 9.273178519396459e-06,
|
876 |
+
"loss": 1.1561,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.3749250149970006,
|
881 |
+
"grad_norm": 2.127427295141141,
|
882 |
+
"learning_rate": 9.260696614134115e-06,
|
883 |
+
"loss": 1.1935,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.3779244151169766,
|
888 |
+
"grad_norm": 2.179542019285163,
|
889 |
+
"learning_rate": 9.24811699148423e-06,
|
890 |
+
"loss": 1.2001,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.3809238152369526,
|
895 |
+
"grad_norm": 2.95737675688332,
|
896 |
+
"learning_rate": 9.235439939955458e-06,
|
897 |
+
"loss": 1.1333,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.38392321535692864,
|
902 |
+
"grad_norm": 2.408346714267433,
|
903 |
+
"learning_rate": 9.222665750290953e-06,
|
904 |
+
"loss": 1.2035,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.3869226154769046,
|
909 |
+
"grad_norm": 1.9803537052769442,
|
910 |
+
"learning_rate": 9.209794715461691e-06,
|
911 |
+
"loss": 1.2133,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.3899220155968806,
|
916 |
+
"grad_norm": 2.0753391828539844,
|
917 |
+
"learning_rate": 9.196827130659752e-06,
|
918 |
+
"loss": 1.2389,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.3929214157168566,
|
923 |
+
"grad_norm": 2.057624573882372,
|
924 |
+
"learning_rate": 9.18376329329155e-06,
|
925 |
+
"loss": 1.1612,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.39592081583683264,
|
930 |
+
"grad_norm": 2.095421490379302,
|
931 |
+
"learning_rate": 9.170603502971017e-06,
|
932 |
+
"loss": 1.2319,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.39892021595680865,
|
937 |
+
"grad_norm": 1.9629007266889844,
|
938 |
+
"learning_rate": 9.157348061512728e-06,
|
939 |
+
"loss": 1.2061,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.40191961607678467,
|
944 |
+
"grad_norm": 1.9702164374790287,
|
945 |
+
"learning_rate": 9.143997272924974e-06,
|
946 |
+
"loss": 1.197,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.40491901619676063,
|
951 |
+
"grad_norm": 2.094524351597277,
|
952 |
+
"learning_rate": 9.1305514434028e-06,
|
953 |
+
"loss": 1.1508,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.40791841631673664,
|
958 |
+
"grad_norm": 2.078336809149187,
|
959 |
+
"learning_rate": 9.117010881320973e-06,
|
960 |
+
"loss": 1.2006,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.41091781643671266,
|
965 |
+
"grad_norm": 2.1047922013296385,
|
966 |
+
"learning_rate": 9.103375897226919e-06,
|
967 |
+
"loss": 1.2225,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.41391721655668867,
|
972 |
+
"grad_norm": 1.9800892010976672,
|
973 |
+
"learning_rate": 9.089646803833589e-06,
|
974 |
+
"loss": 1.2117,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.4169166166766647,
|
979 |
+
"grad_norm": 1.948925596250933,
|
980 |
+
"learning_rate": 9.075823916012298e-06,
|
981 |
+
"loss": 1.1917,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.41991601679664065,
|
986 |
+
"grad_norm": 1.8720535653109143,
|
987 |
+
"learning_rate": 9.061907550785498e-06,
|
988 |
+
"loss": 1.2048,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.42291541691661666,
|
993 |
+
"grad_norm": 2.1914812005829316,
|
994 |
+
"learning_rate": 9.047898027319508e-06,
|
995 |
+
"loss": 1.2393,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.4259148170365927,
|
1000 |
+
"grad_norm": 3.541065061637063,
|
1001 |
+
"learning_rate": 9.033795666917191e-06,
|
1002 |
+
"loss": 1.1728,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.4289142171565687,
|
1007 |
+
"grad_norm": 1.958943800312053,
|
1008 |
+
"learning_rate": 9.019600793010596e-06,
|
1009 |
+
"loss": 1.1204,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.4319136172765447,
|
1014 |
+
"grad_norm": 1.8982949525316917,
|
1015 |
+
"learning_rate": 9.005313731153525e-06,
|
1016 |
+
"loss": 1.136,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.4349130173965207,
|
1021 |
+
"grad_norm": 2.1962092793560775,
|
1022 |
+
"learning_rate": 8.990934809014079e-06,
|
1023 |
+
"loss": 1.2025,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.4379124175164967,
|
1028 |
+
"grad_norm": 2.148888648427292,
|
1029 |
+
"learning_rate": 8.976464356367133e-06,
|
1030 |
+
"loss": 1.1971,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.4409118176364727,
|
1035 |
+
"grad_norm": 2.1656007482087243,
|
1036 |
+
"learning_rate": 8.961902705086785e-06,
|
1037 |
+
"loss": 1.1531,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.4439112177564487,
|
1042 |
+
"grad_norm": 2.245423572348511,
|
1043 |
+
"learning_rate": 8.947250189138732e-06,
|
1044 |
+
"loss": 1.205,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.4469106178764247,
|
1049 |
+
"grad_norm": 2.2015971794373037,
|
1050 |
+
"learning_rate": 8.932507144572616e-06,
|
1051 |
+
"loss": 1.1663,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.44991001799640074,
|
1056 |
+
"grad_norm": 2.040881991969036,
|
1057 |
+
"learning_rate": 8.917673909514321e-06,
|
1058 |
+
"loss": 1.2318,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.45290941811637675,
|
1063 |
+
"grad_norm": 2.0365534777961884,
|
1064 |
+
"learning_rate": 8.902750824158213e-06,
|
1065 |
+
"loss": 1.1634,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.4559088182363527,
|
1070 |
+
"grad_norm": 2.0931596144968903,
|
1071 |
+
"learning_rate": 8.887738230759334e-06,
|
1072 |
+
"loss": 1.1547,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.4589082183563287,
|
1077 |
+
"grad_norm": 2.040316251155918,
|
1078 |
+
"learning_rate": 8.872636473625564e-06,
|
1079 |
+
"loss": 1.1948,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.46190761847630474,
|
1084 |
+
"grad_norm": 2.0411032824079514,
|
1085 |
+
"learning_rate": 8.857445899109716e-06,
|
1086 |
+
"loss": 1.1292,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.46490701859628075,
|
1091 |
+
"grad_norm": 2.9762584994335923,
|
1092 |
+
"learning_rate": 8.84216685560159e-06,
|
1093 |
+
"loss": 1.1308,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.46790641871625677,
|
1098 |
+
"grad_norm": 2.097668580242586,
|
1099 |
+
"learning_rate": 8.826799693519996e-06,
|
1100 |
+
"loss": 1.1631,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.4709058188362327,
|
1105 |
+
"grad_norm": 2.0737253370280384,
|
1106 |
+
"learning_rate": 8.811344765304698e-06,
|
1107 |
+
"loss": 1.1484,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.47390521895620874,
|
1112 |
+
"grad_norm": 2.1733316818144033,
|
1113 |
+
"learning_rate": 8.795802425408352e-06,
|
1114 |
+
"loss": 1.1992,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.47690461907618475,
|
1119 |
+
"grad_norm": 3.0100700234706927,
|
1120 |
+
"learning_rate": 8.780173030288359e-06,
|
1121 |
+
"loss": 1.2115,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.47990401919616077,
|
1126 |
+
"grad_norm": 2.0471682767814374,
|
1127 |
+
"learning_rate": 8.7644569383987e-06,
|
1128 |
+
"loss": 1.2007,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.4829034193161368,
|
1133 |
+
"grad_norm": 2.069677080263759,
|
1134 |
+
"learning_rate": 8.748654510181709e-06,
|
1135 |
+
"loss": 1.1719,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.4859028194361128,
|
1140 |
+
"grad_norm": 2.136133148960194,
|
1141 |
+
"learning_rate": 8.732766108059814e-06,
|
1142 |
+
"loss": 1.1097,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.48890221955608876,
|
1147 |
+
"grad_norm": 2.2078781415683704,
|
1148 |
+
"learning_rate": 8.716792096427217e-06,
|
1149 |
+
"loss": 1.2822,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.49190161967606477,
|
1154 |
+
"grad_norm": 1.8108893344256605,
|
1155 |
+
"learning_rate": 8.700732841641542e-06,
|
1156 |
+
"loss": 1.1984,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.4949010197960408,
|
1161 |
+
"grad_norm": 1.9202600268802827,
|
1162 |
+
"learning_rate": 8.68458871201543e-06,
|
1163 |
+
"loss": 1.1822,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.4979004199160168,
|
1168 |
+
"grad_norm": 2.043987291062948,
|
1169 |
+
"learning_rate": 8.668360077808093e-06,
|
1170 |
+
"loss": 1.1588,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.5008998200359928,
|
1175 |
+
"grad_norm": 1.8608294617929213,
|
1176 |
+
"learning_rate": 8.652047311216823e-06,
|
1177 |
+
"loss": 1.1739,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.5038992201559688,
|
1182 |
+
"grad_norm": 2.0614264560161812,
|
1183 |
+
"learning_rate": 8.635650786368452e-06,
|
1184 |
+
"loss": 1.2053,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.5068986202759448,
|
1189 |
+
"grad_norm": 1.8415134777925706,
|
1190 |
+
"learning_rate": 8.61917087931078e-06,
|
1191 |
+
"loss": 1.1629,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.5098980203959208,
|
1196 |
+
"grad_norm": 2.067056790142203,
|
1197 |
+
"learning_rate": 8.602607968003935e-06,
|
1198 |
+
"loss": 1.1656,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.5128974205158968,
|
1203 |
+
"grad_norm": 1.9885496712381465,
|
1204 |
+
"learning_rate": 8.585962432311728e-06,
|
1205 |
+
"loss": 1.1061,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.5158968206358728,
|
1210 |
+
"grad_norm": 1.8542146492076237,
|
1211 |
+
"learning_rate": 8.569234653992916e-06,
|
1212 |
+
"loss": 1.2416,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.5188962207558488,
|
1217 |
+
"grad_norm": 2.2130247278463453,
|
1218 |
+
"learning_rate": 8.552425016692464e-06,
|
1219 |
+
"loss": 1.2651,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.5218956208758249,
|
1224 |
+
"grad_norm": 1.9214372548459986,
|
1225 |
+
"learning_rate": 8.535533905932739e-06,
|
1226 |
+
"loss": 1.2038,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.5248950209958009,
|
1231 |
+
"grad_norm": 1.8202998106553783,
|
1232 |
+
"learning_rate": 8.518561709104667e-06,
|
1233 |
+
"loss": 1.1806,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.5278944211157769,
|
1238 |
+
"grad_norm": 2.033480383542316,
|
1239 |
+
"learning_rate": 8.501508815458856e-06,
|
1240 |
+
"loss": 1.1138,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.5308938212357528,
|
1245 |
+
"grad_norm": 1.8173739641856819,
|
1246 |
+
"learning_rate": 8.484375616096658e-06,
|
1247 |
+
"loss": 1.0463,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.5338932213557288,
|
1252 |
+
"grad_norm": 1.9159018093250713,
|
1253 |
+
"learning_rate": 8.467162503961209e-06,
|
1254 |
+
"loss": 1.1438,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.5368926214757048,
|
1259 |
+
"grad_norm": 2.0146669190076416,
|
1260 |
+
"learning_rate": 8.449869873828411e-06,
|
1261 |
+
"loss": 1.2241,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.5398920215956808,
|
1266 |
+
"grad_norm": 2.07880204207024,
|
1267 |
+
"learning_rate": 8.432498122297879e-06,
|
1268 |
+
"loss": 1.2059,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.5428914217156569,
|
1273 |
+
"grad_norm": 2.1530579237214593,
|
1274 |
+
"learning_rate": 8.415047647783847e-06,
|
1275 |
+
"loss": 1.1945,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.5458908218356329,
|
1280 |
+
"grad_norm": 1.9176382821131852,
|
1281 |
+
"learning_rate": 8.39751885050603e-06,
|
1282 |
+
"loss": 1.2025,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.5488902219556089,
|
1287 |
+
"grad_norm": 2.032474526366641,
|
1288 |
+
"learning_rate": 8.379912132480441e-06,
|
1289 |
+
"loss": 1.1962,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.5518896220755849,
|
1294 |
+
"grad_norm": 2.454514968342902,
|
1295 |
+
"learning_rate": 8.36222789751018e-06,
|
1296 |
+
"loss": 1.2075,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.5548890221955609,
|
1301 |
+
"grad_norm": 2.033627242661126,
|
1302 |
+
"learning_rate": 8.344466551176163e-06,
|
1303 |
+
"loss": 1.2134,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.5578884223155369,
|
1308 |
+
"grad_norm": 2.0441091460883585,
|
1309 |
+
"learning_rate": 8.326628500827826e-06,
|
1310 |
+
"loss": 1.2038,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.5608878224355129,
|
1315 |
+
"grad_norm": 1.9807070431779146,
|
1316 |
+
"learning_rate": 8.308714155573785e-06,
|
1317 |
+
"loss": 1.12,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.563887222555489,
|
1322 |
+
"grad_norm": 1.9349184602121337,
|
1323 |
+
"learning_rate": 8.290723926272439e-06,
|
1324 |
+
"loss": 1.1802,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.5668866226754649,
|
1329 |
+
"grad_norm": 1.8384106015909107,
|
1330 |
+
"learning_rate": 8.27265822552257e-06,
|
1331 |
+
"loss": 1.1826,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.5698860227954409,
|
1336 |
+
"grad_norm": 1.9156655051619718,
|
1337 |
+
"learning_rate": 8.254517467653858e-06,
|
1338 |
+
"loss": 1.1257,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.5728854229154169,
|
1343 |
+
"grad_norm": 2.1724786856863973,
|
1344 |
+
"learning_rate": 8.236302068717393e-06,
|
1345 |
+
"loss": 1.1839,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.5758848230353929,
|
1350 |
+
"grad_norm": 1.8396024645135292,
|
1351 |
+
"learning_rate": 8.218012446476128e-06,
|
1352 |
+
"loss": 1.16,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.5788842231553689,
|
1357 |
+
"grad_norm": 1.9408487099445306,
|
1358 |
+
"learning_rate": 8.199649020395299e-06,
|
1359 |
+
"loss": 1.2241,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.5818836232753449,
|
1364 |
+
"grad_norm": 1.9108055995475,
|
1365 |
+
"learning_rate": 8.1812122116328e-06,
|
1366 |
+
"loss": 1.164,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.584883023395321,
|
1371 |
+
"grad_norm": 2.098400399811293,
|
1372 |
+
"learning_rate": 8.16270244302953e-06,
|
1373 |
+
"loss": 1.1549,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.587882423515297,
|
1378 |
+
"grad_norm": 2.1600698972560015,
|
1379 |
+
"learning_rate": 8.144120139099697e-06,
|
1380 |
+
"loss": 1.2257,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.590881823635273,
|
1385 |
+
"grad_norm": 2.4157151117755826,
|
1386 |
+
"learning_rate": 8.125465726021068e-06,
|
1387 |
+
"loss": 1.2377,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.593881223755249,
|
1392 |
+
"grad_norm": 2.0852805021246246,
|
1393 |
+
"learning_rate": 8.106739631625216e-06,
|
1394 |
+
"loss": 1.2469,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.596880623875225,
|
1399 |
+
"grad_norm": 1.9748280355919685,
|
1400 |
+
"learning_rate": 8.08794228538769e-06,
|
1401 |
+
"loss": 1.1286,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.5998800239952009,
|
1406 |
+
"grad_norm": 1.9281839006734618,
|
1407 |
+
"learning_rate": 8.06907411841817e-06,
|
1408 |
+
"loss": 1.1319,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.6028794241151769,
|
1413 |
+
"grad_norm": 1.8690571721258256,
|
1414 |
+
"learning_rate": 8.050135563450587e-06,
|
1415 |
+
"loss": 1.1856,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.6058788242351529,
|
1420 |
+
"grad_norm": 1.9748712035222622,
|
1421 |
+
"learning_rate": 8.031127054833192e-06,
|
1422 |
+
"loss": 1.1948,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.608878224355129,
|
1427 |
+
"grad_norm": 1.991151818988732,
|
1428 |
+
"learning_rate": 8.01204902851859e-06,
|
1429 |
+
"loss": 1.1659,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.611877624475105,
|
1434 |
+
"grad_norm": 2.958946009978542,
|
1435 |
+
"learning_rate": 7.992901922053751e-06,
|
1436 |
+
"loss": 1.1856,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.614877024595081,
|
1441 |
+
"grad_norm": 2.065918241043226,
|
1442 |
+
"learning_rate": 7.973686174569971e-06,
|
1443 |
+
"loss": 1.0692,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.617876424715057,
|
1448 |
+
"grad_norm": 2.123952469982477,
|
1449 |
+
"learning_rate": 7.954402226772804e-06,
|
1450 |
+
"loss": 1.1462,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.620875824835033,
|
1455 |
+
"grad_norm": 2.384554268129999,
|
1456 |
+
"learning_rate": 7.93505052093194e-06,
|
1457 |
+
"loss": 1.2331,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.623875224955009,
|
1462 |
+
"grad_norm": 2.213816272262928,
|
1463 |
+
"learning_rate": 7.915631500871084e-06,
|
1464 |
+
"loss": 1.2179,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.626874625074985,
|
1469 |
+
"grad_norm": 2.041537464539173,
|
1470 |
+
"learning_rate": 7.896145611957759e-06,
|
1471 |
+
"loss": 1.1869,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.629874025194961,
|
1476 |
+
"grad_norm": 1.9032099687526678,
|
1477 |
+
"learning_rate": 7.876593301093104e-06,
|
1478 |
+
"loss": 1.1041,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.6328734253149371,
|
1483 |
+
"grad_norm": 2.0485786710751452,
|
1484 |
+
"learning_rate": 7.856975016701616e-06,
|
1485 |
+
"loss": 1.2018,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.635872825434913,
|
1490 |
+
"grad_norm": 1.985579363766555,
|
1491 |
+
"learning_rate": 7.837291208720867e-06,
|
1492 |
+
"loss": 1.2284,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.638872225554889,
|
1497 |
+
"grad_norm": 1.8372693078207498,
|
1498 |
+
"learning_rate": 7.81754232859119e-06,
|
1499 |
+
"loss": 1.2194,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.641871625674865,
|
1504 |
+
"grad_norm": 2.034191799766837,
|
1505 |
+
"learning_rate": 7.797728829245321e-06,
|
1506 |
+
"loss": 1.2119,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.644871025794841,
|
1511 |
+
"grad_norm": 2.172768388345461,
|
1512 |
+
"learning_rate": 7.777851165098012e-06,
|
1513 |
+
"loss": 1.2264,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.647870425914817,
|
1518 |
+
"grad_norm": 2.036813209788241,
|
1519 |
+
"learning_rate": 7.757909792035608e-06,
|
1520 |
+
"loss": 1.2233,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.650869826034793,
|
1525 |
+
"grad_norm": 1.7687192297667345,
|
1526 |
+
"learning_rate": 7.737905167405596e-06,
|
1527 |
+
"loss": 1.2008,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.6538692261547691,
|
1532 |
+
"grad_norm": 1.9034513819160714,
|
1533 |
+
"learning_rate": 7.717837750006106e-06,
|
1534 |
+
"loss": 1.2116,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.6568686262747451,
|
1539 |
+
"grad_norm": 1.896055349909721,
|
1540 |
+
"learning_rate": 7.697708000075404e-06,
|
1541 |
+
"loss": 1.0943,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.6598680263947211,
|
1546 |
+
"grad_norm": 2.01228606334524,
|
1547 |
+
"learning_rate": 7.67751637928132e-06,
|
1548 |
+
"loss": 1.1236,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.6628674265146971,
|
1553 |
+
"grad_norm": 2.156992216970816,
|
1554 |
+
"learning_rate": 7.657263350710676e-06,
|
1555 |
+
"loss": 1.1291,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.6658668266346731,
|
1560 |
+
"grad_norm": 1.9699773673672667,
|
1561 |
+
"learning_rate": 7.636949378858647e-06,
|
1562 |
+
"loss": 1.1458,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.668866226754649,
|
1567 |
+
"grad_norm": 2.1989186993052754,
|
1568 |
+
"learning_rate": 7.616574929618126e-06,
|
1569 |
+
"loss": 1.1121,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.671865626874625,
|
1574 |
+
"grad_norm": 1.993731506914194,
|
1575 |
+
"learning_rate": 7.596140470269029e-06,
|
1576 |
+
"loss": 1.0735,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.674865026994601,
|
1581 |
+
"grad_norm": 1.8252968956264437,
|
1582 |
+
"learning_rate": 7.575646469467576e-06,
|
1583 |
+
"loss": 1.149,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.6778644271145771,
|
1588 |
+
"grad_norm": 2.055158428727496,
|
1589 |
+
"learning_rate": 7.555093397235553e-06,
|
1590 |
+
"loss": 1.154,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.6808638272345531,
|
1595 |
+
"grad_norm": 1.9915560854905294,
|
1596 |
+
"learning_rate": 7.5344817249495195e-06,
|
1597 |
+
"loss": 1.0942,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.6838632273545291,
|
1602 |
+
"grad_norm": 2.06764585971135,
|
1603 |
+
"learning_rate": 7.51381192533001e-06,
|
1604 |
+
"loss": 1.1884,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.6868626274745051,
|
1609 |
+
"grad_norm": 1.9341247237628625,
|
1610 |
+
"learning_rate": 7.493084472430683e-06,
|
1611 |
+
"loss": 1.1791,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.6898620275944811,
|
1616 |
+
"grad_norm": 1.9931838011874805,
|
1617 |
+
"learning_rate": 7.472299841627452e-06,
|
1618 |
+
"loss": 1.1299,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.6928614277144571,
|
1623 |
+
"grad_norm": 1.9296797551564173,
|
1624 |
+
"learning_rate": 7.451458509607583e-06,
|
1625 |
+
"loss": 1.1513,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.6958608278344331,
|
1630 |
+
"grad_norm": 2.0306426071035544,
|
1631 |
+
"learning_rate": 7.430560954358764e-06,
|
1632 |
+
"loss": 1.1837,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.6988602279544092,
|
1637 |
+
"grad_norm": 1.8564265209276956,
|
1638 |
+
"learning_rate": 7.409607655158139e-06,
|
1639 |
+
"loss": 1.2164,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.7018596280743852,
|
1644 |
+
"grad_norm": 2.2341388452646727,
|
1645 |
+
"learning_rate": 7.388599092561315e-06,
|
1646 |
+
"loss": 1.1252,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.7048590281943611,
|
1651 |
+
"grad_norm": 2.1161776966895496,
|
1652 |
+
"learning_rate": 7.367535748391349e-06,
|
1653 |
+
"loss": 1.213,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.7078584283143371,
|
1658 |
+
"grad_norm": 1.9243533852197758,
|
1659 |
+
"learning_rate": 7.3464181057276864e-06,
|
1660 |
+
"loss": 1.1046,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.7108578284343131,
|
1665 |
+
"grad_norm": 1.9237683937108236,
|
1666 |
+
"learning_rate": 7.325246648895089e-06,
|
1667 |
+
"loss": 1.1577,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.7138572285542891,
|
1672 |
+
"grad_norm": 1.7984916602185241,
|
1673 |
+
"learning_rate": 7.304021863452525e-06,
|
1674 |
+
"loss": 1.2052,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.7168566286742651,
|
1679 |
+
"grad_norm": 1.8721994512639362,
|
1680 |
+
"learning_rate": 7.282744236182033e-06,
|
1681 |
+
"loss": 1.1676,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.7198560287942412,
|
1686 |
+
"grad_norm": 1.8334072031704922,
|
1687 |
+
"learning_rate": 7.261414255077561e-06,
|
1688 |
+
"loss": 1.1118,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.7228554289142172,
|
1693 |
+
"grad_norm": 2.2489377670615474,
|
1694 |
+
"learning_rate": 7.240032409333765e-06,
|
1695 |
+
"loss": 1.1682,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.7258548290341932,
|
1700 |
+
"grad_norm": 1.8400363638367707,
|
1701 |
+
"learning_rate": 7.218599189334799e-06,
|
1702 |
+
"loss": 1.1638,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.7288542291541692,
|
1707 |
+
"grad_norm": 1.8851878635905157,
|
1708 |
+
"learning_rate": 7.197115086643069e-06,
|
1709 |
+
"loss": 1.1176,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.7318536292741452,
|
1714 |
+
"grad_norm": 1.8023550249649072,
|
1715 |
+
"learning_rate": 7.175580593987952e-06,
|
1716 |
+
"loss": 1.1164,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.7348530293941212,
|
1721 |
+
"grad_norm": 2.694191659057711,
|
1722 |
+
"learning_rate": 7.153996205254495e-06,
|
1723 |
+
"loss": 1.1573,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.7378524295140971,
|
1728 |
+
"grad_norm": 1.964255695607597,
|
1729 |
+
"learning_rate": 7.132362415472099e-06,
|
1730 |
+
"loss": 1.0549,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.7408518296340731,
|
1735 |
+
"grad_norm": 1.8017763616156734,
|
1736 |
+
"learning_rate": 7.1106797208031554e-06,
|
1737 |
+
"loss": 1.1446,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.7438512297540492,
|
1742 |
+
"grad_norm": 1.9428097126313124,
|
1743 |
+
"learning_rate": 7.088948618531668e-06,
|
1744 |
+
"loss": 1.1081,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.7468506298740252,
|
1749 |
+
"grad_norm": 2.002394147288212,
|
1750 |
+
"learning_rate": 7.067169607051851e-06,
|
1751 |
+
"loss": 1.1359,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.7498500299940012,
|
1756 |
+
"grad_norm": 1.8198961995762413,
|
1757 |
+
"learning_rate": 7.045343185856701e-06,
|
1758 |
+
"loss": 1.1201,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.7528494301139772,
|
1763 |
+
"grad_norm": 1.9151331196894974,
|
1764 |
+
"learning_rate": 7.02346985552653e-06,
|
1765 |
+
"loss": 1.0402,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.7558488302339532,
|
1770 |
+
"grad_norm": 1.9384378002461773,
|
1771 |
+
"learning_rate": 7.001550117717499e-06,
|
1772 |
+
"loss": 1.175,
|
1773 |
+
"step": 252
|
1774 |
+
}
|
1775 |
+
],
|
1776 |
+
"logging_steps": 1,
|
1777 |
+
"max_steps": 666,
|
1778 |
+
"num_input_tokens_seen": 0,
|
1779 |
+
"num_train_epochs": 2,
|
1780 |
+
"save_steps": 84,
|
1781 |
+
"stateful_callbacks": {
|
1782 |
+
"TrainerControl": {
|
1783 |
+
"args": {
|
1784 |
+
"should_epoch_stop": false,
|
1785 |
+
"should_evaluate": false,
|
1786 |
+
"should_log": false,
|
1787 |
+
"should_save": true,
|
1788 |
+
"should_training_stop": false
|
1789 |
+
},
|
1790 |
+
"attributes": {}
|
1791 |
+
}
|
1792 |
+
},
|
1793 |
+
"total_flos": 139507934232576.0,
|
1794 |
+
"train_batch_size": 1,
|
1795 |
+
"trial_name": null,
|
1796 |
+
"trial_params": null
|
1797 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:494d572b90754ea162ceb159834dd59cfa64e2eb57bebdab5361db5946a343ef
|
3 |
+
size 7992
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|