File size: 2,258 Bytes
b38ea85 7f920a7 b38ea85 7f920a7 b38ea85 7f920a7 b38ea85 b5bf350 b38ea85 7f920a7 b38ea85 b5bf350 b38ea85 7f920a7 b38ea85 b5bf350 b38ea85 b5bf350 b38ea85 7f920a7 b38ea85 7f920a7 b38ea85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
language:
- it
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-large-v2
model-index:
- name: Whisper Large v2 Italian
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 it
type: mozilla-foundation/common_voice_11_0
config: it
split: test
args: it
metrics:
- type: wer
value: 4.557596215181799
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large v2 Italian
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 it dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1332
- Wer: 4.5576
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 6000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1684 | 0.17 | 1000 | 0.1620 | 6.4620 |
| 0.1174 | 0.33 | 2000 | 0.1418 | 5.5663 |
| 0.069 | 1.1 | 3000 | 0.1400 | 5.2865 |
| 0.0649 | 1.27 | 4000 | 0.1315 | 4.8932 |
| 0.0334 | 2.04 | 5000 | 0.1368 | 4.6845 |
| 0.037 | 2.21 | 6000 | 0.1332 | 4.5576 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|