EduardoCGarridoMerchan
commited on
Commit
•
d49c7b0
1
Parent(s):
52609dc
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1624.01 +/- 66.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9f84842e157e47b02c716b7dd08783dcd8a2f6de6aa963527eae2ef11298907
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc086bd6160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc086bd61f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc086bd6280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc086bd6310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc086bd63a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc086bd6430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc086bd64c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc086bd6550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc086bd65e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc086bd6670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc086bd6700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc086bd6790>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fc086bcf990>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674134499906669296,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIzPP74ECnE/F9e+vtBmDz9qeiW/B2gjP93xoj6gBQu+nSYlv5oofz9xPHc/EY9hP2IePb+oC+8+M3fqvuEEbD794GG/YRQzv4X6Dj8M/Pc8IdShPy08hb7I6bU+KcUlP0TKhD+Omxg/aiG9Pj3XKz9fFbg+OXyXPREQID/Daqo/iDifP4iY6L9hqoa+HBqCv/nSMbxP+K++73mXv7cTWz94jKo/tx/TvUBqlz8eTUk8TzDSPxQSf75aarK+KbZ3P3muVL+nMMM/4KmNP6BKMMDvw3a/jpsYP2ohvT491ys/HvhYvwZ/KD8o/L49WNFJPiKKHb8kiE885wx/v7fAJT6wISM/534SPyh0N7+UN7c9Uz5iPyBasL/2+ZA/uyo4vialVD+B3nG+by6wvtefAz+SEsY92sv/P26ZB77VKgI/RMqEP3e41r9qIb0+KrC+v8etGz/eUZM/MNZsvwTOkD4Csgc+6RNpP3EPhD4OVyi/RG+vv73eQL8X0bI/s71/v12yxTw0ESM/vaSOvgwoDD4tvoS+dmY0v+H6Dz8Bnqo8bSYdv9tVVr+1nx0/rj1gvu/Ddr+Omxg/aiG9Pj3XKz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB4zyu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlanavQAAAADaV/2/AAAAAGk6WTwAAAAA+Rr4PwAAAADqI+e9AAAAANHr6D8AAAAARB7nPQAAAAAagf2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsHvNNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOl2FrwAAAAA1jkBwAAAAAC6arc9AAAAALMZ5D8AAAAAW1txPQAAAABT+eA/AAAAAKwzuj0AAAAAFuT+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFowbzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA/Pg++AAAAAFRs+r8AAAAAFG5jvAAAAADRg+o/AAAAABxcBz4AAAAAWLv5PwAAAAA0n9A9AAAAAPYM7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9w/E1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx1Q4vQAAAAD6r9m/AAAAALc13D0AAAAAX7/uPwAAAABRBr47AAAAAOOd2T8AAAAA6uKpPQAAAAAHv/O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJURglWwNb2MAWyUTegDjAF0lEdAqRpomZ3LWHV9lChoBkdAizfNm16VuGgHTegDaAhHQKkb1nA6+391fZQoaAZHQIqSWaH9FWpoB03oA2gIR0CpHlHHWBjGdX2UKGgGR0CVckMpgCwKaAdN6ANoCEdAqSEq+N96TnV9lChoBkdAlOPP07KaHGgHTegDaAhHQKknQB5HEuR1fZQoaAZHQJVBbmQr+YNoB03oA2gIR0CpKLjh99c9dX2UKGgGR0CYGZY6nzg/aAdN6ANoCEdAqSsxNyo4uXV9lChoBkdAlwwmDtgKGGgHTegDaAhHQKkuGFM7EHd1fZQoaAZHQJg1IPkJa7poB03oA2gIR0CpNEP3rUsndX2UKGgGR0CYEdeC04R3aAdN6ANoCEdAqTW31OCXhXV9lChoBkdAl4YZyQxN7GgHTegDaAhHQKk4SjCYTkB1fZQoaAZHQJR9+3NLUTdoB03oA2gIR0CpOwtuk1uSdX2UKGgGR0CWf0vKU3XJaAdN6ANoCEdAqUD50CA+ZHV9lChoBkdAlJXoM4LkS2gHTegDaAhHQKlCZ8k2P1d1fZQoaAZHQJbm5ZSvTw5oB03oA2gIR0CpRNlwkxATdX2UKGgGR0CXYFmsvIwNaAdN6ANoCEdAqUenMt9QXXV9lChoBkdAljzmvGIbfmgHTegDaAhHQKlNqdGRV6x1fZQoaAZHQJfVagyuZCxoB03oA2gIR0CpTy0lAu7IdX2UKGgGR0CW+3dLQHAzaAdN6ANoCEdAqVGfK+zt1XV9lChoBkdAl5F495hScmgHTegDaAhHQKlUdxS5y2h1fZQoaAZHQI4l9YEGJN1oB03oA2gIR0CpWpgn+hoNdX2UKGgGR0CRljvYe1a4aAdN6ANoCEdAqVv9GPPszHV9lChoBkdAkhK/DYRNAWgHTegDaAhHQKleh9ehPCV1fZQoaAZHQJVV4LRa5gBoB03oA2gIR0CpYVVFx4pudX2UKGgGR0CVDg6a9bosaAdN6ANoCEdAqWd2UwBYFXV9lChoBkdAlY354KQaJmgHTegDaAhHQKlo6AMDwH91fZQoaAZHQJN83IbOu7poB03oA2gIR0Cpa1UqQRwqdX2UKGgGR0CRl513dKukaAdNtwNoCEdAqW2n4ubqhXV9lChoBkdAksCVnh86WGgHTegDaAhHQKl0Y90Rvm51fZQoaAZHQJYeLpC8e0ZoB03oA2gIR0CpddS2QXANdX2UKGgGR0CWQiCOFQEZaAdN6ANoCEdAqXhD2YfGMnV9lChoBkdAlShJf+jubGgHTegDaAhHQKl6bg7YChh1fZQoaAZHQJW9kwaisXBoB03oA2gIR0CpgRR0dRzjdX2UKGgGR0CSgrxcmjTKaAdN6ANoCEdAqYKDMibDuXV9lChoBkdAlExrH6uW8mgHTegDaAhHQKmE77ALy+Z1fZQoaAZHQJXL2Pkq+aloB03oA2gIR0Cphylmvnr6dX2UKGgGR0CV1s4RmK64aAdN6ANoCEdAqY2nU6PsA3V9lChoBkdAlpjrx3FDOWgHTegDaAhHQKmPE6eXiR51fZQoaAZHQJWEPot+TeRoB03oA2gIR0CpkXTWPLgXdX2UKGgGR0CXShz7MxGlaAdN6ANoCEdAqZOjpRoAXHV9lChoBkdAlpKGBFuvU2gHTegDaAhHQKmaWhib2Dh1fZQoaAZHQJf57BP9DQZoB03oA2gIR0Cpm9C9ytFKdX2UKGgGR0CZbGNMXaakaAdN6ANoCEdAqZ5812q1gHV9lChoBkdAmA+ReXzDoGgHTegDaAhHQKmhARHPNV11fZQoaAZHQJia0Th5xBFoB03oA2gIR0CpqEKAjIJadX2UKGgGR0CYMkAAhje9aAdN6ANoCEdAqam6aPS2IHV9lChoBkdAnJspD/lyR2gHTegDaAhHQKmsdMsYl6Z1fZQoaAZHQJolyMzdk8RoB03oA2gIR0CprsIphF3IdX2UKGgGR0CaszQu27WeaAdN6ANoCEdAqbWs+JP69HV9lChoBkdAmR0iCaqjrWgHTegDaAhHQKm3Is8xKxt1fZQoaAZHQJgnujsUqQRoB03oA2gIR0CpuZxG+bmVdX2UKGgGR0CWgroxpL26aAdN6ANoCEdAqbvqHVPN3XV9lChoBkdAkpAblA/s3WgHTegDaAhHQKnC+e+VTrF1fZQoaAZHQJklMXEZR9BoB03oA2gIR0CpxII065oXdX2UKGgGR0Ca5BGpuMuOaAdN6ANoCEdAqccCteUpu3V9lChoBkdAmmxBtUGVzWgHTegDaAhHQKnJT8WKuSx1fZQoaAZHQJl5AFhXr+poB03oA2gIR0Cp0DPnB+F2dX2UKGgGR0CYGT6TW5H3aAdN6ANoCEdAqdGl3Y+SsHV9lChoBkdAl1vJ+QU5/GgHTegDaAhHQKnUM/mknCx1fZQoaAZHQJpbEv/R3NdoB03oA2gIR0Cp1q9oWYWtdX2UKGgGR0CY+wIo3JgcaAdN6ANoCEdAqd4PEIgNgHV9lChoBkdAl6Ozt1IRRWgHTegDaAhHQKnfrz4DcM51fZQoaAZHQJqZEvoNd7hoB03oA2gIR0Cp4nFBIFvAdX2UKGgGR0CXFgGLUCq7aAdN6ANoCEdAqeTZL26ClXV9lChoBkdAmTRg2ZRbbGgHTegDaAhHQKnrttRekYZ1fZQoaAZHQJg6fwI+nqFoB03oA2gIR0Cp7Sj+irT6dX2UKGgGR0CadRA4XGfgaAdN6ANoCEdAqe+ikM1CPnV9lChoBkdAl/W/jfek6GgHTegDaAhHQKnx202tMf11fZQoaAZHQJnRoL6UJOZoB03oA2gIR0Cp+HP7vXsgdX2UKGgGR0CbzzQr+YMOaAdN6ANoCEdAqfnc5U96knV9lChoBkdAm3GBDPWxyGgHTegDaAhHQKn8TqREF4d1fZQoaAZHQJhl8YfnwG5oB03oA2gIR0Cp/oeu/1xsdX2UKGgGR0CbQgtoSL62aAdN6ANoCEdAqgU4WepXIXV9lChoBkdAl9VdZmqYJGgHTegDaAhHQKoGnfgrH2h1fZQoaAZHQJgzLjKgZjxoB03oA2gIR0CqCRV3+uNhdX2UKGgGR0CYwL2dupCKaAdN6ANoCEdAqgtHHWBjF3V9lChoBkdAnHmkrf+CLGgHTegDaAhHQKoR21VHWjJ1fZQoaAZHQJwhLNpudf9oB03oA2gIR0CqE1IIfKZEdX2UKGgGR0CYy6iqhlDnaAdN6ANoCEdAqhXjTBqKxnV9lChoBkdAmfoyXD3ueGgHTegDaAhHQKoYJDzAeq91fZQoaAZHQJsLstrbg0loB03oA2gIR0CqHq4SpR4ydX2UKGgGR0CYGpWcz67/aAdN6ANoCEdAqiAcwN9YwXV9lChoBkdAmrHmrn1WbWgHTegDaAhHQKoigmtQsPJ1fZQoaAZHQJpJRHNHH3loB03oA2gIR0CqJLqdpZfVdX2UKGgGR0CaWXQAMlTnaAdN6ANoCEdAqiuP+6y0KXV9lChoBkdAmYmFz+3pfWgHTegDaAhHQKos+RwIdEN1fZQoaAZHQJswdp48loloB03oA2gIR0CqL2hVdX1bdX2UKGgGR0CY7W2x6fJ4aAdN6ANoCEdAqjGs65oXbnV9lChoBkdAnK6qlYU342gHTegDaAhHQKo6YjUNKAd1fZQoaAZHQJySfhKlHjJoB03oA2gIR0CqPL1PN3W4dX2UKGgGR0Cbi7owEhaDaAdN6ANoCEdAqkB0VWS2Y3V9lChoBkdAmoGU5p8F6mgHTegDaAhHQKpCwm1IAfd1fZQoaAZHQJi5a8cuJ1toB03oA2gIR0CqSWUGFBY3dX2UKGgGR0CaCi83++/QaAdN6ANoCEdAqkradMCcPXV9lChoBkdAmv4Lc0tRN2gHTegDaAhHQKpNURr8BMl1fZQoaAZHQJkrdXfZVXFoB03oA2gIR0CqT4H5rP+odX2UKGgGR0CcMJ18stkGaAdN6ANoCEdAqlYtcD8tPHV9lChoBkdAmQ8JDeCTU2gHTegDaAhHQKpXmmsvIwN1fZQoaAZHQJiUcp3HJcRoB03oA2gIR0CqWganBLwndX2UKGgGR0CXZxgGr0aqaAdN6ANoCEdAqlxDsSkCWHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6e1a309708403daee616e393cab8ed5d1c119727cd8be9498a2be8fd31cdb09
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b4d6165095e0efc8427a51a5bb149224637b42f6f1947a04e094ce982c757a1
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc086bd6160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc086bd61f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc086bd6280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc086bd6310>", "_build": "<function ActorCriticPolicy._build at 0x7fc086bd63a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc086bd6430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc086bd64c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc086bd6550>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc086bd65e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc086bd6670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc086bd6700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc086bd6790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc086bcf990>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674134499906669296, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIzPP74ECnE/F9e+vtBmDz9qeiW/B2gjP93xoj6gBQu+nSYlv5oofz9xPHc/EY9hP2IePb+oC+8+M3fqvuEEbD794GG/YRQzv4X6Dj8M/Pc8IdShPy08hb7I6bU+KcUlP0TKhD+Omxg/aiG9Pj3XKz9fFbg+OXyXPREQID/Daqo/iDifP4iY6L9hqoa+HBqCv/nSMbxP+K++73mXv7cTWz94jKo/tx/TvUBqlz8eTUk8TzDSPxQSf75aarK+KbZ3P3muVL+nMMM/4KmNP6BKMMDvw3a/jpsYP2ohvT491ys/HvhYvwZ/KD8o/L49WNFJPiKKHb8kiE885wx/v7fAJT6wISM/534SPyh0N7+UN7c9Uz5iPyBasL/2+ZA/uyo4vialVD+B3nG+by6wvtefAz+SEsY92sv/P26ZB77VKgI/RMqEP3e41r9qIb0+KrC+v8etGz/eUZM/MNZsvwTOkD4Csgc+6RNpP3EPhD4OVyi/RG+vv73eQL8X0bI/s71/v12yxTw0ESM/vaSOvgwoDD4tvoS+dmY0v+H6Dz8Bnqo8bSYdv9tVVr+1nx0/rj1gvu/Ddr+Omxg/aiG9Pj3XKz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB4zyu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlanavQAAAADaV/2/AAAAAGk6WTwAAAAA+Rr4PwAAAADqI+e9AAAAANHr6D8AAAAARB7nPQAAAAAagf2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsHvNNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOl2FrwAAAAA1jkBwAAAAAC6arc9AAAAALMZ5D8AAAAAW1txPQAAAABT+eA/AAAAAKwzuj0AAAAAFuT+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFowbzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA/Pg++AAAAAFRs+r8AAAAAFG5jvAAAAADRg+o/AAAAABxcBz4AAAAAWLv5PwAAAAA0n9A9AAAAAPYM7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9w/E1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx1Q4vQAAAAD6r9m/AAAAALc13D0AAAAAX7/uPwAAAABRBr47AAAAAOOd2T8AAAAA6uKpPQAAAAAHv/O/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJURglWwNb2MAWyUTegDjAF0lEdAqRpomZ3LWHV9lChoBkdAizfNm16VuGgHTegDaAhHQKkb1nA6+391fZQoaAZHQIqSWaH9FWpoB03oA2gIR0CpHlHHWBjGdX2UKGgGR0CVckMpgCwKaAdN6ANoCEdAqSEq+N96TnV9lChoBkdAlOPP07KaHGgHTegDaAhHQKknQB5HEuR1fZQoaAZHQJVBbmQr+YNoB03oA2gIR0CpKLjh99c9dX2UKGgGR0CYGZY6nzg/aAdN6ANoCEdAqSsxNyo4uXV9lChoBkdAlwwmDtgKGGgHTegDaAhHQKkuGFM7EHd1fZQoaAZHQJg1IPkJa7poB03oA2gIR0CpNEP3rUsndX2UKGgGR0CYEdeC04R3aAdN6ANoCEdAqTW31OCXhXV9lChoBkdAl4YZyQxN7GgHTegDaAhHQKk4SjCYTkB1fZQoaAZHQJR9+3NLUTdoB03oA2gIR0CpOwtuk1uSdX2UKGgGR0CWf0vKU3XJaAdN6ANoCEdAqUD50CA+ZHV9lChoBkdAlJXoM4LkS2gHTegDaAhHQKlCZ8k2P1d1fZQoaAZHQJbm5ZSvTw5oB03oA2gIR0CpRNlwkxATdX2UKGgGR0CXYFmsvIwNaAdN6ANoCEdAqUenMt9QXXV9lChoBkdAljzmvGIbfmgHTegDaAhHQKlNqdGRV6x1fZQoaAZHQJfVagyuZCxoB03oA2gIR0CpTy0lAu7IdX2UKGgGR0CW+3dLQHAzaAdN6ANoCEdAqVGfK+zt1XV9lChoBkdAl5F495hScmgHTegDaAhHQKlUdxS5y2h1fZQoaAZHQI4l9YEGJN1oB03oA2gIR0CpWpgn+hoNdX2UKGgGR0CRljvYe1a4aAdN6ANoCEdAqVv9GPPszHV9lChoBkdAkhK/DYRNAWgHTegDaAhHQKleh9ehPCV1fZQoaAZHQJVV4LRa5gBoB03oA2gIR0CpYVVFx4pudX2UKGgGR0CVDg6a9bosaAdN6ANoCEdAqWd2UwBYFXV9lChoBkdAlY354KQaJmgHTegDaAhHQKlo6AMDwH91fZQoaAZHQJN83IbOu7poB03oA2gIR0Cpa1UqQRwqdX2UKGgGR0CRl513dKukaAdNtwNoCEdAqW2n4ubqhXV9lChoBkdAksCVnh86WGgHTegDaAhHQKl0Y90Rvm51fZQoaAZHQJYeLpC8e0ZoB03oA2gIR0CpddS2QXANdX2UKGgGR0CWQiCOFQEZaAdN6ANoCEdAqXhD2YfGMnV9lChoBkdAlShJf+jubGgHTegDaAhHQKl6bg7YChh1fZQoaAZHQJW9kwaisXBoB03oA2gIR0CpgRR0dRzjdX2UKGgGR0CSgrxcmjTKaAdN6ANoCEdAqYKDMibDuXV9lChoBkdAlExrH6uW8mgHTegDaAhHQKmE77ALy+Z1fZQoaAZHQJXL2Pkq+aloB03oA2gIR0Cphylmvnr6dX2UKGgGR0CV1s4RmK64aAdN6ANoCEdAqY2nU6PsA3V9lChoBkdAlpjrx3FDOWgHTegDaAhHQKmPE6eXiR51fZQoaAZHQJWEPot+TeRoB03oA2gIR0CpkXTWPLgXdX2UKGgGR0CXShz7MxGlaAdN6ANoCEdAqZOjpRoAXHV9lChoBkdAlpKGBFuvU2gHTegDaAhHQKmaWhib2Dh1fZQoaAZHQJf57BP9DQZoB03oA2gIR0Cpm9C9ytFKdX2UKGgGR0CZbGNMXaakaAdN6ANoCEdAqZ5812q1gHV9lChoBkdAmA+ReXzDoGgHTegDaAhHQKmhARHPNV11fZQoaAZHQJia0Th5xBFoB03oA2gIR0CpqEKAjIJadX2UKGgGR0CYMkAAhje9aAdN6ANoCEdAqam6aPS2IHV9lChoBkdAnJspD/lyR2gHTegDaAhHQKmsdMsYl6Z1fZQoaAZHQJolyMzdk8RoB03oA2gIR0CprsIphF3IdX2UKGgGR0CaszQu27WeaAdN6ANoCEdAqbWs+JP69HV9lChoBkdAmR0iCaqjrWgHTegDaAhHQKm3Is8xKxt1fZQoaAZHQJgnujsUqQRoB03oA2gIR0CpuZxG+bmVdX2UKGgGR0CWgroxpL26aAdN6ANoCEdAqbvqHVPN3XV9lChoBkdAkpAblA/s3WgHTegDaAhHQKnC+e+VTrF1fZQoaAZHQJklMXEZR9BoB03oA2gIR0CpxII065oXdX2UKGgGR0Ca5BGpuMuOaAdN6ANoCEdAqccCteUpu3V9lChoBkdAmmxBtUGVzWgHTegDaAhHQKnJT8WKuSx1fZQoaAZHQJl5AFhXr+poB03oA2gIR0Cp0DPnB+F2dX2UKGgGR0CYGT6TW5H3aAdN6ANoCEdAqdGl3Y+SsHV9lChoBkdAl1vJ+QU5/GgHTegDaAhHQKnUM/mknCx1fZQoaAZHQJpbEv/R3NdoB03oA2gIR0Cp1q9oWYWtdX2UKGgGR0CY+wIo3JgcaAdN6ANoCEdAqd4PEIgNgHV9lChoBkdAl6Ozt1IRRWgHTegDaAhHQKnfrz4DcM51fZQoaAZHQJqZEvoNd7hoB03oA2gIR0Cp4nFBIFvAdX2UKGgGR0CXFgGLUCq7aAdN6ANoCEdAqeTZL26ClXV9lChoBkdAmTRg2ZRbbGgHTegDaAhHQKnrttRekYZ1fZQoaAZHQJg6fwI+nqFoB03oA2gIR0Cp7Sj+irT6dX2UKGgGR0CadRA4XGfgaAdN6ANoCEdAqe+ikM1CPnV9lChoBkdAl/W/jfek6GgHTegDaAhHQKnx202tMf11fZQoaAZHQJnRoL6UJOZoB03oA2gIR0Cp+HP7vXsgdX2UKGgGR0CbzzQr+YMOaAdN6ANoCEdAqfnc5U96knV9lChoBkdAm3GBDPWxyGgHTegDaAhHQKn8TqREF4d1fZQoaAZHQJhl8YfnwG5oB03oA2gIR0Cp/oeu/1xsdX2UKGgGR0CbQgtoSL62aAdN6ANoCEdAqgU4WepXIXV9lChoBkdAl9VdZmqYJGgHTegDaAhHQKoGnfgrH2h1fZQoaAZHQJgzLjKgZjxoB03oA2gIR0CqCRV3+uNhdX2UKGgGR0CYwL2dupCKaAdN6ANoCEdAqgtHHWBjF3V9lChoBkdAnHmkrf+CLGgHTegDaAhHQKoR21VHWjJ1fZQoaAZHQJwhLNpudf9oB03oA2gIR0CqE1IIfKZEdX2UKGgGR0CYy6iqhlDnaAdN6ANoCEdAqhXjTBqKxnV9lChoBkdAmfoyXD3ueGgHTegDaAhHQKoYJDzAeq91fZQoaAZHQJsLstrbg0loB03oA2gIR0CqHq4SpR4ydX2UKGgGR0CYGpWcz67/aAdN6ANoCEdAqiAcwN9YwXV9lChoBkdAmrHmrn1WbWgHTegDaAhHQKoigmtQsPJ1fZQoaAZHQJpJRHNHH3loB03oA2gIR0CqJLqdpZfVdX2UKGgGR0CaWXQAMlTnaAdN6ANoCEdAqiuP+6y0KXV9lChoBkdAmYmFz+3pfWgHTegDaAhHQKos+RwIdEN1fZQoaAZHQJswdp48loloB03oA2gIR0CqL2hVdX1bdX2UKGgGR0CY7W2x6fJ4aAdN6ANoCEdAqjGs65oXbnV9lChoBkdAnK6qlYU342gHTegDaAhHQKo6YjUNKAd1fZQoaAZHQJySfhKlHjJoB03oA2gIR0CqPL1PN3W4dX2UKGgGR0Cbi7owEhaDaAdN6ANoCEdAqkB0VWS2Y3V9lChoBkdAmoGU5p8F6mgHTegDaAhHQKpCwm1IAfd1fZQoaAZHQJi5a8cuJ1toB03oA2gIR0CqSWUGFBY3dX2UKGgGR0CaCi83++/QaAdN6ANoCEdAqkradMCcPXV9lChoBkdAmv4Lc0tRN2gHTegDaAhHQKpNURr8BMl1fZQoaAZHQJkrdXfZVXFoB03oA2gIR0CqT4H5rP+odX2UKGgGR0CcMJ18stkGaAdN6ANoCEdAqlYtcD8tPHV9lChoBkdAmQ8JDeCTU2gHTegDaAhHQKpXmmsvIwN1fZQoaAZHQJiUcp3HJcRoB03oA2gIR0CqWganBLwndX2UKGgGR0CXZxgGr0aqaAdN6ANoCEdAqlxDsSkCWHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5640055949eaef5acc209d6fe3ddc1a43f3d6a87af84179b7ceebb379468fa4
|
3 |
+
size 1157832
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1624.0094801840153, "std_reward": 66.17929256465236, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T14:35:11.624685"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2104b77e45ec0d8a5f6e58f4ac712dd1bfdc9de213e63d76f950edc22eda12b1
|
3 |
+
size 2521
|